1. Enhanced Raman Scattering in CVD-Grown MoS2/Ag Nanoparticle Hybrids
- Author
-
Dionysios M. Maratos, Antonios Michail, Alkeos Stamatelatos, Spyridon Grammatikopoulos, Dimitris Anestopoulos, Vassilis Tangoulis, Konstantinos Papagelis, John Parthenios, and Panagiotis Poulopoulos
- Subjects
SERS ,LSPRs ,MoS2 ,Ag nanoparticles ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
Surface-Enhanced Raman Spectroscopy (SERS) is a powerful, non-destructive technique for enhancing molecular spectra, first discovered in 1974. This study investigates the enhancement of Raman signals from single- and few-layer molybdenum disulfide (MoS2) when interacting with silver nanoparticles. We synthesized a MoS2 membrane primarily consisting of monolayers and bilayers through a wet chemical vapor deposition method using metal salts. The silver nanoparticles were either directly grown on the MoS2 membrane or placed beneath it. Raman measurements revealed a significant increase in signal intensity from the MoS2 membrane on the silver nanoparticles, attributed to localized surface plasmon resonances that facilitate SERS. Our results indicate that dichalcogenide/plasmonic systems have promising applications in the semiconductor industry.
- Published
- 2024
- Full Text
- View/download PDF