585 results on '"Varshney RK"'
Search Results
2. Strategies of optimizing crop production in rainfed areas
- Author
-
VARSHNEY, RK, primary, PRIHAR, SS, additional, and SEKHON, HS, additional
- Published
- 2022
- Full Text
- View/download PDF
3. High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms
- Author
-
Jin, X, Zarco-Tejada, PJ, Schmidhalter, U, Reynolds, MP, Hawkesford, MJ, Varshney, RK, Yang, T, Nie, C, Li, Z, Ming, B, Xiao, Y, Xie, Y, Li, S, Jin, X, Zarco-Tejada, PJ, Schmidhalter, U, Reynolds, MP, Hawkesford, MJ, Varshney, RK, Yang, T, Nie, C, Li, Z, Ming, B, Xiao, Y, Xie, Y, and Li, S
- Abstract
Most works dealing with trajectory tracking problems in the iterative learning control (ILC) literature assume an iteration domain that has identical trial lengths. This fundamental assumption may not always hold in practical applications. To address iteration-varying trial lengths, a new structure of ILC laws has been presented in this article, based on the newly proposed modified composite energy function (mCEF) analysis. The proposed approach is a feedback control scheme that utilizes tracking errors in the current iteration, so that it can deal with iteration-varying system uncertainties. It is also a unified framework such that the traditional ILC problems with identical trial lengths are shown to be a special case of the more general problem considered in this article. Multi-input-multi-output (MIMO) nonlinear systems are considered, which can be subject to parametric system uncertainties and an unknown control input gain matrix function. We show that in the closed loop analysis, the proposed control scheme can guarantee asymptotic convergence on the full-state tracking error over the iteration domain, in the sense of the L2Tk norm, with Tk being the trial length of the k th iteration. In the end, a simulation example is shown to illustrate the efficacy of the proposed ILC algorithm.
- Published
- 2021
4. Trait associations in the pangenome of pigeon pea (Cajanus cajan)
- Author
-
Zhao, J, Bayer, PE, Ruperao, P, Saxena, RK, Khan, AW, Golicz, AA, Nguyen, HT, Batley, J, Edwards, D, Varshney, RK, Zhao, J, Bayer, PE, Ruperao, P, Saxena, RK, Khan, AW, Golicz, AA, Nguyen, HT, Batley, J, Edwards, D, and Varshney, RK
- Abstract
Pigeon pea (Cajanus cajan) is an important orphan crop mainly grown by smallholder farmers in India and Africa. Here, we present the first pigeon pea pangenome based on 89 accessions mainly from India and the Philippines, showing that there is significant genetic diversity in Philippine individuals that is not present in Indian individuals. Annotation of variable genes suggests that they are associated with self-fertilization and response to disease. We identified 225 SNPs associated with nine agronomically important traits over three locations and two different time points, with SNPs associated with genes for transcription factors and kinases. These results will lead the way to an improved pigeon pea breeding programme.
- Published
- 2020
5. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement
- Author
-
Khan, AW, Garg, V, Roorkiwal, M, Golicz, AA, Edwards, D, Varshney, RK, Khan, AW, Garg, V, Roorkiwal, M, Golicz, AA, Edwards, D, and Varshney, RK
- Abstract
The pangenome provides genomic variations in the cultivated gene pool for a given species. However, as the crop's gene pool comprises many species, especially wild relatives with diverse genetic stock, here we suggest using accessions from all available species of a given genus for the development of a more comprehensive and complete pangenome, which we refer to as a super-pangenome. The super-pangenome provides a complete genomic variation repertoire of a genus and offers unprecedented opportunities for crop improvement. This opinion article focuses on recent developments in crop pangenomics, the need for a super-pangenome that should include wild species, and its application for crop improvement.
- Published
- 2020
6. Erratum to: Characterization of microsatellites and development of chromosome specific STMS markers in bread wheat
- Author
-
Varshney RK, Kumar A, Balyan HS, Roy JK, Prasad M, and Gupta PK
- Published
- 2000
- Full Text
- View/download PDF
7. Modelling predicts that soybean is poised to dominate crop production across Africa
- Author
-
Foyer, CH, Siddique, KHM, Tai, APK, Anders, S, Fodor, N, Wong, F-L, Ludidi, N, Chapman, MA, Ferguson, BJ, Considine, MJ, Zabel, F, Prasad, PVV, Varshney, RK, Nguyen, HT, and Lam, H-M
- Subjects
food and beverages - Abstract
The superior agronomic and human nutritional properties of grain legumes (pulses) make them an ideal foundation for future sustainable agriculture. Legume‐based farming is particularly important in Africa, where small‐scale agricultural systems dominate the food production landscape. Legumes provide an inexpensive source of protein and nutrients to African households as well as natural fertilization for the soil. While the consumption of traditionally grown legumes has started to decline, the production of soybeans (Glycine max Merr.) is spreading fast, especially across southern Africa. Predictions of future land‐use allocation and production show that the soybean is poised to dominate future production across Africa. Land use models project an expansion of harvest area, while crop models project possible yield increases. Moreover, a seed change in farming strategy is underway. This is being driven largely by the combined cash‐crop value of products such as oils and the high nutritional benefits of soybean as an animal feed. Intensification of soybean production has the potential to reduce the dependence of Africa on soybean imports. However, a successful ‘soybean bonanza’ across Africa necessitates an intensive research, development, extension and policy agenda to ensure that soybean genetic improvements and production technology meet future demands for sustainable production.
- Published
- 2018
8. Association Analysis Identifies Important QTL for Seed Weight in Chickpea
- Author
-
Kulwal, PL, primary, Thudi, M, additional, Mhase, LB, additional, and Varshney, RK, additional
- Published
- 2016
- Full Text
- View/download PDF
9. Accessing genetic diversity for crop improvement
- Author
-
Glaszmann, JC, primary, Kilian, B, additional, Upadhyaya, HD, additional, and Varshney, RK, additional
- Published
- 2010
- Full Text
- View/download PDF
10. QTLs and genes for tolerance to abiotic stress in cereals
- Author
-
Roberto Tuberosa, Silvio Salvi, GUPTA PK, VARSHNEY RK, TUBEROSA R., and SALVI S
- Subjects
Genetics ,ABIOTIC STRESS TOLERANCE ,Abiotic stress ,QTL ,Drought tolerance ,Quantitative trait locus ,Biology ,Gene ,CEREALS - Published
- 2004
11. Drought-tolerant wheat for enhancing global food security.
- Author
-
Bohra A, Choudhary M, Bennett D, Joshi R, Mir RR, and Varshney RK
- Subjects
- Plant Breeding methods, Crops, Agricultural genetics, Stress, Physiological, Triticum genetics, Triticum growth & development, Triticum physiology, Droughts, Food Security
- Abstract
Wheat is among the most produced grain crops of the world and alone provides a fifth of the world's calories and protein. Wheat has played a key role in food security since the crop served as a Neolithic founder crop for the establishment of world agriculture. Projections showing a decline in global wheat yields in changing climates imply that food security targets could be jeopardized. Increased frequency and intensity of drought occurrence is evident in major wheat-producing regions worldwide, and notably, the wheat-producing area under drought is projected to swell globally by 60% by the end of the 21st century. Wheat yields are significantly reduced due to changes in plant morphological, physiological, biochemical, and molecular activities in response to drought stress. Advances in wheat genetics, multi-omics technologies and plant phenotyping have enhanced the understanding of crop responses to drought conditions. Research has elucidated key genomic regions, candidate genes, signalling molecules and associated networks that orchestrate tolerance mechanisms under drought stress. Robust and low-cost selection tools are now available in wheat for screening genetic variations for drought tolerance traits. New breeding techniques and selection tools open a unique opportunity to tailor future wheat crop with optimal trait combinations that help withstand extreme drought. Adoption of the new wheat varieties will increase crop diversity in rain-fed agriculture and ensure sustainable improvements in crop yields to safeguard the world's food security in drier environments., Competing Interests: Declarations Competing interests The authors declare no competing interests., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
12. Dissecting genomic regions and underlying candidate genes in groundnut MAGIC population for drought tolerance.
- Author
-
Sharma V, Mahadevaiah SS, Latha P, Gowda SA, Manohar SS, Jadhav K, Bajaj P, Joshi P, Anitha T, Jadhav MP, Sharma S, Janila P, Bhat RS, Varshney RK, and Pandey MK
- Subjects
- Arachis genetics, Arachis physiology, Genes, Plant, Phenotype, Polymorphism, Single Nucleotide, Genome, Plant, Drought Resistance, Genome-Wide Association Study, Droughts
- Abstract
Background: Groundnut is mainly grown in the semi-arid tropic (SAT) regions worldwide, where abiotic stress like drought is persistent. However, a major research gap exists regarding exploring the genetic and genomic underpinnings of tolerance to drought. In this study, a multi-parent advanced generation inter-cross (MAGIC) population was developed and evaluated for five seasons at two locations for three consecutive years (2018-19, 2019-20 and 2020-21) under drought stress and normal environments., Results: Phenotyping data of drought tolerance related traits, combined with the high-quality 10,556 polymorphic SNPs, were used to perform multi-locus model genome-wide association study (GWAS) analysis. We identified 37 significant marker-trait associations (MTAs) (Bonferroni-corrected) accounting, 0.91- 9.82% of the phenotypic variance. Intriguingly, 26 significant MTAs overlap on four chromosomes (Ah03, Ah07, Ah10 and Ah18) (harboring 70% of MTAs), indicating genomic hotspot regions governing drought tolerance traits. Furthermore, important candidate genes associated with leaf senescence (NAC transcription factor), flowering (B3 domain-containing transcription factor, Ulp1 protease family, and Ankyrin repeat-containing protein), involved in chlorophyll biosynthesis (FAR1 DNA-binding domain protein), stomatal regulation (Rop guanine nucleotide exchange factor; Galacturonosyltransferases), and associated with yield traits (Fasciclin-like arabinogalactan protein 11 and Fasciclin-like arabinogalactan protein 21) were found in the vicinity of significant MTAs genomic regions., Conclusion: The findings of our investigation have the potential to provide a basis for significant MTAs validation, gene discovery and development of functional markers, which could be employed in genomics-assisted breeding to develop climate-resilient groundnut varieties., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
13. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly.
- Author
-
Ali S, Tyagi A, Park S, Varshney RK, and Bae H
- Abstract
Background: Roots perform multifaceted functions in plants including the movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Although crop development has greatly advanced, most current efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle. However, with the aid of high throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrates on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology., Aim of the Review: The goal of this study is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and adaptation., Key Scientific Concepts of Review: In plants, FER is a unique RLK because it can act as a multitasking sensor regulate diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving RALF peptides, calcium, ROS and hormones. We also highlight number of outstanding questions in FER mediated root responses that warrant future investigation. We believe that FER can provide novels insights for the development of future climate resilient and high yielding crops based on the modified root system., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF
14. Enhancing peanut nutritional quality by editing AhKCS genes lacking natural variation.
- Author
-
Huai D, Xue X, Wu J, Pandey MK, Liu N, Huang L, Yan L, Chen Y, Wang X, Wang Q, Kang Y, Wang Z, Jiang H, Varshney RK, Liao B, and Lei Y
- Published
- 2024
- Full Text
- View/download PDF
15. Natural variation in the chickpea metabolome under drought stress.
- Author
-
Chaturvedi P, Pierides I, López-Hidalgo C, Garg V, Zhang S, Barmukh R, Bellaire A, Li J, Bachmann G, Valledor L, Varshney RK, Ghatak A, and Weckwerth W
- Abstract
Chickpea is the world's fourth largest grown legume crop, which significantly contributes to food security by providing calories and dietary protein globally. However, the increased frequency of drought stress has significantly reduced chickpea production in recent years. Here, we have performed a field experiment with 36 diverse chickpea genotypes to evaluate grain yield, photosynthetic activities and molecular traits related to drought stress. For metabolomics analysis, leaf tissue was collected at three time points representing different pod-filling stages. We identified L-threonic acid, fructose and sugar alcohols involved in chickpea adaptive drought response within the mid-pod-filling stage. A stress susceptibility index for each genotype was calculated to identify tolerance capacity under drought, distributing the 36 genotypes into four categories from best to worst performance. To understand how biochemical mechanisms control different traits for genetic improvement, we performed a differential Jacobian analysis, which unveiled the interplay between various metabolic pathways across three time points, including higher flux towards inositol interconversions, glycolysis for high-performing genotypes, fumarate to malate conversion, and carbon and nitrogen metabolism perturbations. Metabolic GWAS (mGWAS) analysis uncovered gene candidates involved in glycolysis and MEP pathway corroborating with the differential biochemical Jacobian results. Accordingly, this proposed data analysis strategy bridges the gap from pure statistical association to causal biochemical relations by exploiting natural variation. Our study offers new perspectives on the genetic and metabolic understanding of drought tolerance-associated diversity in the chickpea metabolome and led to the identification of metabolic control points that can be also tested in other legume crops., (© 2024 The Author(s). Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
16. Impact of heat stress on physiological characteristics and expression of heat shock proteins (HSPs) in groundnut ( Arachis hypogaea L.).
- Author
-
Aravind B, Shreeraksha RJ, Poornima R, Ravichandran D, Krishnaraj PU, Chimmad VP, Mirajkar KK, Bagewadi B, Janila P, Pandey MK, Varshney RK, and Nayak SN
- Abstract
The current climate change has a profound impact on agricultural production. Despite the unanimous efforts of several nations to prevent further increase in global temperatures, developing adaptive strategies by imparting heat tolerance in crop plants is essential to ensure global food security. This study demonstrates the impact of heat stress on the morphological, physiological and biochemical properties of different groundnut genotypes derived from a recombinant inbred line (RIL) population (JL 24 × 55-437). The plants were grown in controlled conditions and a high-temperature stress of 45 °C was gradually imposed by placing the plants in an environmental chamber during peak reproductive stage [25 days after sowing (DAS) to 60 DAS]. Heat tolerant genotypes had better biochemical machinery to withstand the heat stress-induced oxidative burst with higher activity of catalase and peroxidase. Also, the tolerant genotypes had lesser membrane damage as indicated by lower malondialdehyde levels. Greater expression of heat shock proteins ( HSP17 ) transcripts alongside elevated levels of both enzymatic and non-enzymatic antioxidant activity was observed when exposed to high temperature, indicating their potential association with heat stress tolerance in groundnut., Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01520-y., Competing Interests: Conflict of interestThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© Prof. H.S. Srivastava Foundation for Science and Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Published
- 2024
- Full Text
- View/download PDF
17. Delineation of loci governing an extra-earliness trait in lentil (Lens culinaris Medik.) using the QTL-Seq approach.
- Author
-
Shivaprasad KM, Dikshit HK, Mishra GP, Sinha SK, Aski M, Kohli M, Mishra DC, Singh AK, Gupta S, Singh A, Tripathi K, Kumar RR, Kumar A, Jha GK, Kumar S, and Varshney RK
- Subjects
- Polymorphism, Single Nucleotide genetics, INDEL Mutation, Phenotype, Chromosome Mapping, Chromosomes, Plant genetics, Genes, Plant genetics, Flowers genetics, Flowers growth & development, Lens Plant genetics, Lens Plant growth & development, Quantitative Trait Loci genetics
- Abstract
Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F
2 ), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties., (© 2024 The Author(s). Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
18. Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations.
- Author
-
Hou Y, Gan J, Fan Z, Sun L, Garg V, Wang Y, Li S, Bao P, Cao B, Varshney RK, and Zhao H
- Subjects
- China, Adaptation, Physiological genetics, Acclimatization genetics, Haplotypes, Poaceae genetics, Climate Change, Genetic Variation, Genome, Plant
- Abstract
Moso bamboo (Phyllostachys edulis), an ecologically and economically important forest species in East Asia, plays vital roles in carbon sequestration and climate change mitigation. However, intensifying climate change threatens moso bamboo survival. Here we generate high-quality haplotype-based pangenome assemblies for 16 representative moso bamboo accessions and integrated these assemblies with 427 previously resequenced accessions. Characterization of the haplotype-based pangenome reveals extensive genetic variation, predominantly between haplotypes rather than within accessions. Many genes with allele-specific expression patterns are implicated in climate responses. Integrating spatiotemporal climate data reveals more than 1050 variations associated with pivotal climate factors, including temperature and precipitation. Climate-associated variations enable the prediction of increased genetic risk across the northern and western regions of China under future emissions scenarios, underscoring the threats posed by rising temperatures. Our integrated haplotype-based pangenome elucidates moso bamboo's local climate adaptation mechanisms and provides critical genomic resources for addressing intensifying climate pressures on this essential bamboo. More broadly, this study demonstrates the power of long-read sequencing in dissecting adaptive traits in climate-sensitive species, advancing evolutionary knowledge to support conservation., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
19. Genome-wide association mapping reveals novel genes and genomic regions controlling root-lesion nematode resistance in chickpea mini core collection.
- Author
-
Kumar A, Naik YD, Gautam V, Sahu S, Valluri V, Channale S, Bhatt J, Sharma S, Ramakrishnan RS, Sharma R, Kudapa H, Zwart RS, Punnuri SM, Varshney RK, and Thudi M
- Abstract
Root-lesion nematodes (RLN) pose a significant threat to chickpea (Cicer arietinum L.) by damaging the root system and causing up to 25% economic losses due to reduced yield. Worldwide commercially grown chickpea varieties lack significant genetic resistance to RLN, necessitating the identification of genetic variants contributing to natural resistance. This study identifies genomic loci responsible for resistance to the RLN, Pratylenchus thornei Sher & Allen, in chickpea by utilizing high-quality single nucleotide polymorphisms from whole-genome sequencing data of 202 chickpea accessions. Phenotypic evaluations of the genetically diverse set of chickpea accessions in India and Australia revealed a wide range of responses from resistant to susceptible. Genome-wide association studies (GWAS) employing Fixed and Random Model Circulating Probability Unification (FarmCPU) and Bayesian-Information and Linkage-Disequilibrium Iteratively Nested Keyway (BLINK) models identified 44 marker-trait associations distributed across all chromosomes except Ca1. Crucially, genomic regions on Ca2 and Ca5 consistently display significant associations across locations. Of 25 candidate genes identified, five genes were putatively involved in RLN resistance response (glucose-6-phosphate dehydrogenase, heat shock proteins, MYB-like DNA-binding protein, zinc finger FYVE protein and pathogenesis-related thaumatin-like protein). One notably identified gene (Ca_10016) presents four haplotypes, where haplotypes 1-3 confer moderate susceptibility, and haplotype 4 contributes to high susceptibility to RLN. This information provides potential targets for marker development to enhance breeding for RLN resistance in chickpea. Additionally, five potential resistant genotypes (ICC3512, ICC8855, ICC5337, ICC8950, and ICC6537) to P. thornei were identified based on their performance at a specific location. The study's significance lies in its comprehensive approach, integrating multiple-location phenotypic evaluations, advanced GWAS models, and functional genomics to unravel the genetic basis of P. thornei resistance. The identified genomic regions, candidate genes, and haplotypes offer valuable insights for breeding strategies, paving the way for developing chickpea varieties resilient to P. thornei attack., (© 2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
20. Genome-wide association study reveals the genetic basis of amino acids contents variations in Peanut (Arachis hypogaea L.).
- Author
-
Umer MJ, Lu Q, Huang L, Batool R, Liu H, Li H, Wang R, Qianxia Y, Varshney RK, Pandey MK, Hong Y, and Chen X
- Subjects
- Seeds genetics, Seeds metabolism, Arachis genetics, Arachis metabolism, Genome-Wide Association Study, Amino Acids metabolism, Polymorphism, Single Nucleotide genetics
- Abstract
Peanut is a significant source of protein for human consumption. One of the primary objectives in peanut breeding is the development of new cultivars with enhanced nutritional values. To further this goal, a genome-wide association study (GWAS) was conducted to analyze seed amino acids contents in 390 diverse peanut accessions collected worldwide, mainly from China, India, and the United States, in 2017 and 2018. These accessions were assessed for their content of 10 different amino acids. Variations in amino acids contents were observed, and arginine (Arg) was found to have the highest average value among all the amino acids quantified. The geographical distribution of the accessions also revealed variations in amino acids contents. High and positive correlation coefficients were observed among the amino acids, suggesting linked metabolic pathways or genetic regulation. A total of 88 single nucleotide polymorphisms (SNPs) spanning various chromosomes were identified, each associated with different amino acids. By using a combination of GWAS, expression anlaysis, and genomic polymorphisim comparisions, the Ahy_A09g041582 (LAC15) gene located on chromrosome A09 was identified as the key candidate which might be involved in plant growth and regulation and may alter amino acids levels. Expression analysis indicated that Ahy_A09g041582 has higher expressions in the shells and seeds than other genes located in the candidate region. This study may help with marker-based breeding of peanuts with higher nutritional value and offers fresh insights into the genetic basis of the amino acids contents of peanuts., (© 2024 The Author(s). Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.)
- Published
- 2024
- Full Text
- View/download PDF
21. Genetic resources and genes/QTLs for gram pod borer (Helicoverpa armigera Hübner) resistance in chickpea from the Western Himalayas.
- Author
-
Rehman SA, Gul S, Parthiban M, Isha I, Reddy MSS, Chitikineni A, Thudi M, Penmetsa RV, Varshney RK, and Mir RR
- Subjects
- Animals, Polymorphism, Single Nucleotide, Genotype, Genome-Wide Association Study, Larva, Genes, Plant, Helicoverpa armigera, Himalayas, Cicer genetics, Moths genetics, Quantitative Trait Loci
- Abstract
Helicoverpa armigera (also known as gram pod borer) is a serious threat to chickpea production in the world. A set of 173 chickpea genotypes were evaluated for H. armigera resistance, including mean larval population (MLP), percentage pod damage (PPD), and pest resistance (PR) for 2 consecutive years (year 2020 and 2021). The same core set was also genotyped with 50K Axiom CicerSNP Array. The trait data and 50,000 single nucleotide polymorphism genotypic data were used together to work out marker-trait associations (MTAs) using different genome-wide association studies models. For MLP, a total of 53 MTAs were identified, including 25 MTAs in year 2020 and 28 MTAs in year 2021. A set of three MTAs was found common in both environments. For PPD, two MTAs in year 2020 and five MTAs in year 2021 were identified. A set of two MTAs were common in both environments. Similarly, for PR, only two MTAs common in both environments were identified. Interestingly, a common MTA (Affx_123255526) on chromosome 2 (Ca2) was found to be associated with all the three component traits (MLP, PPD, and PR) of pod borer resistance in chickpea. Further, we report key genes that encode SCAMPs (that facilitates the secretion of defense-related molecules), quinone oxidoreductase (enables the production of reactive oxygen species that promotes diapause of gram pod borer), and NB-LRR proteins that have been implicated in plant defense against H. armigera. The resistant chickpea genotypes, MTAs, and key genes reported in the present study may prove useful in the future for developing pod borer-resistant chickpea varieties., (© 2024 The Author(s). The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
22. Unlocking plant genetics with telomere-to-telomere genome assemblies.
- Author
-
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, and Varshney RK
- Subjects
- Genomics methods, Repetitive Sequences, Nucleic Acid genetics, Plants genetics, Chromosomes, Plant genetics, Haplotypes, Crops, Agricultural genetics, Plant Breeding methods, Telomere genetics, Genome, Plant
- Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences., (© 2024. Springer Nature America, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
23. A near complete genome of Arachis monticola, an allotetraploid wild peanut.
- Author
-
Xue H, Zhao K, Zhao K, Han S, Chitikineni A, Zhang L, Qiu D, Ren R, Gong F, Li Z, Ma X, Zhang X, Varshney RK, Zhang X, Wei C, and Yin D
- Subjects
- Tetraploidy, Arachis genetics, Arachis microbiology, Genome, Plant genetics
- Published
- 2024
- Full Text
- View/download PDF
24. Identification and application of a candidate gene AhAftr1 for aflatoxin production resistance in peanut seed (Arachis hypogaea L.).
- Author
-
Yu B, Liu N, Huang L, Luo H, Zhou X, Lei Y, Yan L, Wang X, Chen W, Kang Y, Ding Y, Jin G, Pandey MK, Janila P, Kishan Sudini H, Varshney RK, Jiang H, Liu S, and Liao B
- Subjects
- Plant Proteins genetics, Plant Proteins metabolism, Genetic Linkage, Genes, Plant, Plants, Genetically Modified genetics, Aspergillus genetics, Genotype, Arachis genetics, Arachis microbiology, Arachis immunology, Aflatoxins genetics, Disease Resistance genetics, Quantitative Trait Loci, Plant Diseases microbiology, Plant Diseases genetics, Chromosome Mapping methods, Plant Breeding methods, Seeds genetics
- Abstract
Introduction: Peanut is susceptible to infection of Aspergillus fungi and conducive to aflatoxin contamination, hence developing aflatoxin-resistant variety is highly meaningful. Identifying functional genes or loci conferring aflatoxin resistance and molecular diagnostic marker are crucial for peanut breeding., Objectives: This work aims to (1) identify candidate gene for aflatoxin production resistance, (2) reveal the related resistance mechanism, and (3) develop diagnostic marker for resistance breeding program., Methods: Resistance to aflatoxin production in a recombined inbred line (RIL) population derived from a high-yielding variety Xuhua13 crossed with an aflatoxin-resistant genotype Zhonghua 6 was evaluated under artificial inoculation for three consecutive years. Both genetic linkage analysis and QTL-seq were conducted for QTL mapping. The candidate gene was further fine-mapped using a secondary segregation mapping population and validated by transgenic experiments. RNA-Seq analysis among resistant and susceptible RILs was used to reveal the resistance pathway for the candidate genes., Results: The major effect QTL qAFTRA07.1 for aflatoxin production resistance was mapped to a 1.98 Mbp interval. A gene, AhAftr1 (Arachis hypogaea Aflatoxin resistance 1), was detected structure variation (SV) in leucine rich repeat (LRR) domain of its production, and involved in disease resistance response through the effector-triggered immunity (ETI) pathway. Transgenic plants with overexpression of AhAftr1
(ZH6) exhibited 57.3% aflatoxin reduction compared to that of AhAftr1(XH13) . A molecular diagnostic marker AFTR.Del.A07 was developed based on the SV. Thirty-six lines, with aflatoxin content decrease by over 77.67% compared to the susceptible control Zhonghua12 (ZH12), were identified from a panel of peanut germplasm accessions and breeding lines through using AFTR.Del.A07., Conclusion: Our findings would provide insights of aflatoxin production resistance mechanisms and laid meaningful foundation for further breeding programs., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Production and hosting by Elsevier B.V.)- Published
- 2024
- Full Text
- View/download PDF
25. Chromosome-level reference genome and resequencing of 322 accessions reveal evolution, genomic imprint and key agronomic traits in adzuki bean.
- Author
-
Chu L, Yang K, Chen C, Zhao B, Hou Y, Wang W, Zhao P, Wang K, Wang B, Xiao Y, Li Y, Li Y, Song Q, Liu B, Fan R, Bohra A, Yu J, Sonnenschein EC, Varshney RK, Tian Z, Jian J, and Wan P
- Subjects
- Chromosomes, Plant genetics, Domestication, Genetic Variation, Genomics, Crops, Agricultural genetics, Phenotype, Genome, Plant genetics, Vigna genetics, Genome-Wide Association Study
- Abstract
Adzuki bean (Vigna angularis) is an important legume crop cultivated in over 30 countries worldwide. We developed a high-quality chromosome-level reference genome of adzuki bean cultivar Jingnong6 by combining PacBio Sequel long-read sequencing with short-read and Hi-C technologies. The assembled genome covers 97.8% of the adzuki bean genome with a contig N50 of approximately 16 Mb and a total of 32 738 protein-coding genes. We also generated a comprehensive genome variation map of adzuki bean by whole-genome resequencing (WGRS) of 322 diverse adzuki beans accessions including both wild and cultivated. Furthermore, we have conducted comparative genomics and a genome-wide association study (GWAS) on key agricultural traits to investigate the evolution and domestication. GWAS identified several candidate genes, including VaCycA3;1, VaHB15, VaANR1 and VaBm, that exhibited significant associations with domestication traits. Furthermore, we conducted functional analyses on the roles of VaANR1 and VaBm in regulating seed coat colour. We provided evidence for the highest genetic diversity of wild adzuki (Vigna angularis var. nipponensis) in China with the presence of the most original wild adzuki bean, and the occurrence of domestication process facilitating transition from wild to cultigen. The present study elucidates the genetic basis of adzuki bean domestication traits and provides crucial genomic resources to support future breeding efforts in adzuki bean., (© 2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
26. Unique regulatory network of dragon fruit simultaneously mitigates the effect of vanadium pollutant and environmental factors.
- Author
-
Zaman QU, Garg V, Raza A, Nazir MF, Hui L, Khan D, Khokhar AA, Hussain MA, Wang HF, and Varshney RK
- Subjects
- Vanadium pharmacology, Stress, Physiological genetics, Caragana genetics, Caragana physiology, Plant Proteins genetics, Plant Proteins metabolism, Protein Interaction Maps, Gene Expression Profiling, Droughts, Transcriptome genetics, Transcriptome drug effects, Cactaceae, Gene Expression Regulation, Plant drug effects, Gene Regulatory Networks drug effects, Fruit genetics, Fruit drug effects, Fruit metabolism
- Abstract
Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants., (© 2024 The Author(s). Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.)
- Published
- 2024
- Full Text
- View/download PDF
27. ScRNA-seq reveals dark- and light-induced differentially expressed gene atlases of seedling leaves in Arachis hypogaea L.
- Author
-
Deng Q, Du P, Gangurde SS, Hong Y, Xiao Y, Hu D, Li H, Lu Q, Li S, Liu H, Wang R, Huang L, Wang W, Garg V, Liang X, Varshney RK, Chen X, and Liu H
- Subjects
- Transcription Factors genetics, Transcription Factors metabolism, Arabidopsis genetics, Arabidopsis radiation effects, Arabidopsis growth & development, Arabidopsis metabolism, Darkness, Gene Expression Profiling, Plant Proteins genetics, Plant Proteins metabolism, Single-Cell Gene Expression Analysis, Arachis genetics, Arachis metabolism, Arachis growth & development, Arachis radiation effects, Plant Leaves genetics, Plant Leaves radiation effects, Plant Leaves metabolism, Plant Leaves growth & development, Seedlings genetics, Seedlings radiation effects, Seedlings growth & development, Gene Expression Regulation, Plant radiation effects, Light
- Abstract
Although the regulatory mechanisms of dark and light-induced plant morphogenesis have been broadly investigated, the biological process in peanuts has not been systematically explored on single-cell resolution. Herein, 10 cell clusters were characterized using scRNA-seq-identified marker genes, based on 13 409 and 11 296 single cells from 1-week-old peanut seedling leaves grown under dark and light conditions. 6104 genes and 50 transcription factors (TFs) displayed significant expression patterns in distinct cell clusters, which provided gene resources for profiling dark/light-induced candidate genes. Further pseudo-time trajectory and cell cycle evidence supported that dark repressed the cell division and perturbed normal cell cycle, especially the PORA abundances correlated with 11 TFs highly enriched in mesophyll to restrict the chlorophyllide synthesis. Additionally, light repressed the epidermis cell developmental trajectory extending by inhibiting the growth hormone pathway, and 21 TFs probably contributed to the different genes transcriptional dynamic. Eventually, peanut AHL17 was identified from the profile of differentially expressed TFs, which encoded protein located in the nucleus promoted leaf epidermal cell enlargement when ectopically overexpressed in Arabidopsis through the regulatory phytohormone pathway. Overall, our study presents the different gene atlases in peanut etiolated and green seedlings, providing novel biological insights to elucidate light-induced leaf cell development at the single-cell level., (© 2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
28. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses.
- Author
-
Akhtar K, Ain NU, Prasad PVV, Naz M, Aslam MM, Djalovic I, Riaz M, Ahmad S, Varshney RK, He B, and Wen R
- Subjects
- Plants metabolism, Plants genetics, Gene Expression Regulation, Plant, Nitrogen metabolism, Stress, Physiological
- Abstract
Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH
4 + ) and nitrate (NO3 - ) in plants mainly depends on soil properties. Under the sufficient availability of NO3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress., (© 2024 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)- Published
- 2024
- Full Text
- View/download PDF
29. Development and evaluation of Fusarium wilt-resistant and high-yielding chickpea advanced breeding line, KCD 11.
- Author
-
Laxuman C, Naik YD, Desai BK, Kenganal M, Patil B, Reddy BS, Patil DH, Chakurte S, Kuchanur PH, K SK, Gaddi AK, Yogesh LN, Nidagundi J, Dodamani BM, Sunkad G, Thudi M, and Varshney RK
- Subjects
- Polymorphism, Single Nucleotide, Cicer microbiology, Cicer genetics, Plant Diseases microbiology, Plant Diseases genetics, Fusarium pathogenicity, Fusarium physiology, Disease Resistance genetics, Plant Breeding methods
- Abstract
Fusarium wilt (FW) is the most severe soil-borne disease of chickpea that causes yield losses up to 100%. To improve FW resistance in JG 11, a high-yielding variety that became susceptible to FW, we used WR 315 as the donor parent and followed the pedigree breeding method. Based on disease resistance and yield performance, four lines were evaluated in station trials during 2017-2018 and 2018-2019 at Kalaburagi, India. Further, two lines, namely, Kalaburagi chickpea desi 5 (KCD 5) and KCD 11, which possesses the resistance allele for a specific single-nucleotide polymorphism marker linked with FW resistance, were evaluated across six different locations (Bidar, Kalaburagi, Raichur, Siruguppa, Bhimarayanagudi and Hagari) over a span of 3 years (2020-2021, 2021-2022 and 2022-2023). KCD 11 exhibited notable performance, showcasing yield advantages of 8.67%, 11.26% and 23.88% over JG 11, and the regional checks Super Annigeri 1 (SA 1) and Annigeri 1, respectively, with enhanced FW resistance in wilt sick plot. Further, KCD 11 outperformed JG 11, SA 1 and Annigeri 1 in multi-location trials conducted across three seasons in the North Eastern Transition Zone, North Eastern Dry Zone, and North Dry Zones of Karnataka. KCD 11 was also tested in trials conducted by All India Coordinated Research Project on chickpea and was also nominated for state varietal trials for its release as a FW-resistant and high-yielding variety. The selected line is anticipated to cater the needs of chickpea growers with the dual advantage of yield increment and disease resistance., (© 2024 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
30. Author Correction: Cicer super-pangenome provides insights into species evolution and agronomic trait loci for crop improvement in chickpea.
- Author
-
Khan AW, Garg V, Sun S, Gupta S, Dudchenko O, Roorkiwal M, Chitikineni A, Bayer PE, Shi C, Upadhyaya HD, Bohra A, Bharadwaj C, Mir RR, Baruch K, Yang B, Coyne CJ, Bansal KC, Nguyen HT, Ronen G, Aiden EL, Veneklaas E, Siddique KHM, Liu X, Edwards D, and Varshney RK
- Published
- 2024
- Full Text
- View/download PDF
31. Insight into the genome of an arsenic loving and plant growth-promoting strain of Micrococcus luteus isolated from arsenic contaminated groundwater.
- Author
-
Kabiraj A, Halder U, Chitikineni A, Varshney RK, and Bandopadhyay R
- Subjects
- Biodegradation, Environmental, Groundwater microbiology, Genes, Bacterial, Genomic Islands, Oryza growth & development, Oryza metabolism, Metals, Water Pollutants, Chemical analysis, Water Pollutants, Chemical metabolism, Arsenic analysis, Arsenic metabolism, Micrococcus luteus isolation & purification, Micrococcus luteus metabolism
- Abstract
Contamination of arsenic in drinking water and foods is a threat for human beings. To achieve the goal for the reduction of arsenic availability, besides conventional technologies, arsenic bioremediation by using some potent bacteria is one of the hot topics for researchers. In this context, bacterium, AKS4c was isolated from arsenic contaminated water of Purbasthali, West Bengal, India, and through draft genome sequence; it was identified as a strain of Micrococcus luteus that comprised of 2.4 Mb genome with 73.1% GC content and 2256 protein coding genes. As the accessory genome, about 22 genomic islands (GIs) associated with many metal-resistant genes were identified. This strain was capable to tolerate more than 46,800 mg/L arsenate and 390 mg/L arsenite salts as well as found to be tolerable to multi-metals such as Fe, Pb, Mo, Mn, and Zn up to a certain limit of concentrations. Strain AKS4c was able to oxidize arsenite to less toxic arsenate, and its arsenic adsorption property was qualitatively confirmed through X-ray fluorescence (XRF) and Fourier transform infrared spectroscopy (FTIR) analysis. Quantitative estimation of plant growth-promoting attributes like Indole acetic acid (IAA), Gibberellic acid (GA), and proline production and enhancement of rice seedling growth in laboratory condition leads to its future applicability in arsenic bioremediation as a plant growth-promoting rhizobacteria (PGPR)., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
32. Cicer super-pangenome provides insights into species evolution and agronomic trait loci for crop improvement in chickpea.
- Author
-
Khan AW, Garg V, Sun S, Gupta S, Dudchenko O, Roorkiwal M, Chitikineni A, Bayer PE, Shi C, Upadhyaya HD, Bohra A, Bharadwaj C, Mir RR, Baruch K, Yang B, Coyne CJ, Bansal KC, Nguyen HT, Ronen G, Aiden EL, Veneklaas E, Siddique KHM, Liu X, Edwards D, and Varshney RK
- Subjects
- Genetic Variation, Evolution, Molecular, Plant Breeding methods, Phylogeny, Phenotype, Cicer genetics, Genome, Plant, Quantitative Trait Loci, Crops, Agricultural genetics
- Abstract
Chickpea (Cicer arietinum L.)-an important legume crop cultivated in arid and semiarid regions-has limited genetic diversity. Efforts are being undertaken to broaden its diversity by utilizing its wild relatives, which remain largely unexplored. Here, we present the Cicer super-pangenome based on the de novo genome assemblies of eight annual Cicer wild species. We identified 24,827 gene families, including 14,748 core, 2,958 softcore, 6,212 dispensable and 909 species-specific gene families. The dispensable genome was enriched for genes related to key agronomic traits. Structural variations between cultivated and wild genomes were used to construct a graph-based genome, revealing variations in genes affecting traits such as flowering time, vernalization and disease resistance. These variations will facilitate the transfer of valuable traits from wild Cicer species into elite chickpea varieties through marker-assisted selection or gene-editing. This study offers valuable insights into the genetic diversity and potential avenues for crop improvement in chickpea., (© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
33. Multiple strategies, including 6mA methylation, affecting plant alternative splicing in allopolyploid peanut.
- Author
-
Wang L, Chen H, Zhuang Y, Chen K, Zhang C, Cai T, Yang Q, Fu H, Chen X, Chitkineni A, Wang X, Varshney RK, and Zhuang W
- Subjects
- Gene Expression Regulation, Plant, Polyploidy, DNA Methylation genetics, Polyadenylation genetics, Transcriptome genetics, Alternative Splicing genetics, Arachis genetics, Arachis metabolism
- Abstract
Alternative splicing (AS), an important post-transcriptional regulation mechanism in eukaryotes, can significantly increase transcript diversity and contribute to gene expression regulation and many other complicated developmental processes. While plant gene AS events are well described, few studies have investigated the comprehensive regulation machinery of plant AS. Here, we use multi-omics to analyse peanut AS events. Using long-read isoform sequencing, 146 464 full-length non-chimeric transcripts were obtained, resulting in annotation corrections for 1782 genes and the identification of 4653 new loci. Using Iso-Seq RNA sequences, 271 776 unique splice junctions were identified, 82.49% of which were supported by transcriptome data. We characterized 50 977 polyadenylation sites for 23 262 genes, 12 369 of which had alternative polyadenylation sites. AS allows differential regulation of the same gene by miRNAs at the isoform level coupled with polyadenylation. In addition, we identified many long non-coding RNAs and fusion transcripts. There is a suppressed effect of 6mA on AS and gene expression. By analysis of chromatin structures, the genes located in the boundaries of topologically associated domains, proximal chromosomal telomere regions, inter- or intra-chromosomal loops were found to have more unique splice isoforms, higher expression, lower 6mA and more transposable elements (TEs) in their gene bodies than the other genes, indicating that chromatin interaction, 6mA and TEs play important roles in AS and gene expression. These results greatly refine the peanut genome annotation and contribute to the study of gene expression and regulation in peanuts. This work also showed AS is associated with multiple strategies for gene regulation., (© 2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
34. Meta QTL analysis for dissecting abiotic stress tolerance in chickpea.
- Author
-
Panigrahi S, Kumar U, Swami S, Singh Y, Balyan P, Singh KP, Dhankher OP, Varshney RK, Roorkiwal M, Amiri KM, and Mir RR
- Subjects
- Chromosome Mapping, Droughts, Genome-Wide Association Study, Cicer genetics, Quantitative Trait Loci, Stress, Physiological genetics
- Abstract
Background: Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea., Results: A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
35. Engineering plants using diverse CRISPR-associated proteins and deregulation of genome-edited crops.
- Author
-
Zaman QU, Raza A, Lozano-Juste J, Chao L, Jones MGK, Wang HF, and Varshney RK
- Subjects
- CRISPR-Associated Proteins genetics, CRISPR-Associated Proteins metabolism, Plant Breeding methods, Gene Editing methods, Crops, Agricultural genetics, CRISPR-Cas Systems genetics, Genome, Plant genetics, Plants, Genetically Modified genetics
- Abstract
The CRISPR/Cas system comprises RNA-guided nucleases, the target specificity of which is directed by Watson-Crick base pairing of target loci with single guide (sg)RNA to induce the desired edits. CRISPR-associated proteins and other engineered nucleases are opening new avenues of research in crops to induce heritable mutations. Here, we review the diversity of CRISPR-associated proteins and strategies to deregulate genome-edited (GEd) crops by considering them to be close to natural processes. This technology ensures yield without penalties, advances plant breeding, and guarantees manipulation of the genome for desirable traits. DNA-free and off-target-free GEd crops with defined characteristics can help to achieve sustainable global food security under a changing climate, but need alignment of international regulations to operate in existing supply chains., Competing Interests: Declaration of interests The authors have no conflicts of interest to disclose., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
36. Aspergillus flavus pangenome (AflaPan) uncovers novel aflatoxin and secondary metabolite associated gene clusters.
- Author
-
Gangurde SS, Korani W, Bajaj P, Wang H, Fountain JC, Agarwal G, Pandey MK, Abbas HK, Chang PK, Holbrook CC, Kemerait RC, Varshney RK, Dutta B, Clevenger JP, and Guo B
- Subjects
- Zea mays microbiology, Zea mays genetics, Genome-Wide Association Study, Genes, Fungal, Whole Genome Sequencing, Genetic Variation, Aspergillus flavus genetics, Aspergillus flavus metabolism, Aflatoxins genetics, Aflatoxins metabolism, Multigene Family, Genome, Fungal, Secondary Metabolism genetics
- Abstract
Background: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes., Results: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites., Conclusion: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research., (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2024
- Full Text
- View/download PDF
37. Correction: High-throughput diagnostic markers for foliar fungal disease resistance and high oleic acid content in groundnut.
- Author
-
Pandey MK, Gangurde SS, Shasidhar Y, Sharma V, Kale SM, Khan AW, Shah P, Joshi P, Bhat RS, Janila P, Bera SK, and Varshney RK
- Published
- 2024
- Full Text
- View/download PDF
38. High-throughput diagnostic markers for foliar fungal disease resistance and high oleic acid content in groundnut.
- Author
-
Pandey MK, Gangurde SS, Shasidhar Y, Sharma V, Kale SM, Khan AW, Shah P, Joshi P, Bhat RS, Janila P, Bera SK, and Varshney RK
- Subjects
- Disease Resistance genetics, Oleic Acid, Plant Breeding, Chromosome Mapping, Plant Diseases genetics, Plant Diseases microbiology, Basidiomycota genetics, Mycoses
- Abstract
Background: Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits., Results: Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation., Conclusion: In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
39. Unraveling the genetics of heat tolerance in chickpea landraces ( Cicer arietinum L.) using genome-wide association studies.
- Author
-
Danakumara T, Kumar N, Patil BS, Kumar T, Bharadwaj C, Jain PK, Nimmy MS, Joshi N, Parida SK, Bindra S, Kole C, and Varshney RK
- Abstract
Chickpea, being an important grain legume crop, is often confronted with the adverse effects of high temperatures at the reproductive stage of crop growth, drastically affecting yield and overall productivity. The current study deals with an extensive evaluation of chickpea genotypes, focusing on the traits associated with yield and their response to heat stress. Notably, we observed significant variations for these traits under both normal and high-temperature conditions, forming a robust basis for genetic research and breeding initiatives. Furthermore, the study revealed that yield-related traits exhibited high heritability, suggesting their potential suitability for marker-assisted selection. We carried out single-nucleotide polymorphism (SNP) genotyping using the genotyping-by-sequencing (GBS) method for a genome-wide association study (GWAS). Overall, 27 marker-trait associations (MTAs) linked to yield-related traits, among which we identified five common MTAs displaying pleiotropic effects after applying a stringent Bonferroni-corrected p-value threshold of <0.05 [-log
10 (p) > 4.95] using the BLINK (Bayesian-information and linkage-disequilibrium iteratively nested keyway) model. Through an in-depth in silico analysis of these markers against the CDC Frontier v1 reference genome, we discovered that the majority of the SNPs were located at or in proximity to gene-coding regions. We further explored candidate genes situated near these MTAs, shedding light on the molecular mechanisms governing heat stress tolerance and yield enhancement in chickpeas such as indole-3-acetic acid-amido synthetase GH3.1 with GH3 auxin-responsive promoter and pentatricopeptide repeat-containing protein, etc. The harvest index (HI) trait was associated with marker Ca3:37444451 encoding aspartic proteinase ortholog sequence of Oryza sativa subsp. japonica and Medicago truncatula , which is known for contributing to heat stress tolerance. These identified MTAs and associated candidate genes may serve as valuable assets for breeding programs dedicated to tailoring chickpea varieties resilient to heat stress and climate change., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Danakumara, Kumar, Patil, Kumar, Bharadwaj, Jain, Nimmy, Joshi, Parida, Bindra, Kole and Varshney.)- Published
- 2024
- Full Text
- View/download PDF
40. State of the Globe: Deciphering the Puzzle of Cerebral Malaria in Children.
- Author
-
Varshney RK
- Published
- 2024
- Full Text
- View/download PDF
41. Designing future peanut: the power of genomics-assisted breeding.
- Author
-
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, and Zhuang W
- Subjects
- Plant Breeding, Genomics, Vegetables, Arachis genetics, Fabaceae
- Abstract
Key Message: Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
42. Integrated multi-omics analysis reveals drought stress response mechanism in chickpea (Cicer arietinum L.).
- Author
-
Kudapa H, Ghatak A, Barmukh R, Chaturvedi P, Khan A, Kale S, Fragner L, Chitikineni A, Weckwerth W, and Varshney RK
- Subjects
- Multiomics, Plant Roots genetics, Droughts, Galactose metabolism, Uridine Diphosphate metabolism, Cicer genetics
- Abstract
Drought is one of the major constraints limiting chickpea productivity. To unravel complex mechanisms regulating drought response in chickpea, we generated transcriptomics, proteomics, and metabolomics datasets from root tissues of four contrasting drought-responsive chickpea genotypes: ICC 4958, JG 11, and JG 11+ (drought-tolerant), and ICC 1882 (drought-sensitive) under control and drought stress conditions. Integration of transcriptomics and proteomics data identified enriched hub proteins encoding isoflavone 4'-O-methyltransferase, UDP-d-glucose/UDP-d-galactose 4-epimerase, and delta-1-pyrroline-5-carboxylate synthetase. These proteins highlighted the involvement of pathways such as antibiotic biosynthesis, galactose metabolism, and isoflavonoid biosynthesis in activating drought stress response mechanisms. Subsequently, the integration of metabolomics data identified six metabolites (fructose, galactose, glucose, myoinositol, galactinol, and raffinose) that showed a significant correlation with galactose metabolism. Integration of root-omics data also revealed some key candidate genes underlying the drought-responsive "QTL-hotspot" region. These results provided key insights into complex molecular mechanisms underlying drought stress response in chickpea., (© 2023 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
43. Maize and heat stress: Physiological, genetic, and molecular insights.
- Author
-
Djalovic I, Kundu S, Bahuguna RN, Pareek A, Raza A, Singla-Pareek SL, Prasad PVV, and Varshney RK
- Subjects
- Plant Breeding, Heat-Shock Response, Quantitative Trait Loci, Zea mays genetics, Genome-Wide Association Study
- Abstract
Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5°C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes., (© 2023 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
44. Exploring the genomics of abiotic stress tolerance and crop resilience to climate change.
- Author
-
Varshney RK, Barmukh R, Bentley A, and Nguyen HT
- Subjects
- Genomics, Crops, Agricultural genetics, Stress, Physiological, Climate Change, Resilience, Psychological
- Published
- 2024
- Full Text
- View/download PDF
45. Whole genome resequencing and phenotyping of MAGIC population for high resolution mapping of drought tolerance in chickpea.
- Author
-
Thudi M, Samineni S, Li W, Boer MP, Roorkiwal M, Yang Z, Ladejobi F, Zheng C, Chitikineni A, Nayak S, He Z, Valluri V, Bajaj P, Khan AW, Gaur PM, van Eeuwijk F, Mott R, Xin L, and Varshney RK
- Subjects
- Chromosome Mapping, Genome, Plant, Genome-Wide Association Study, Drought Resistance, Cicer genetics
- Abstract
Terminal drought is one of the major constraints to crop production in chickpea (Cicer arietinum L.). In order to map drought tolerance related traits at high resolution, we sequenced multi-parent advanced generation intercross (MAGIC) population using whole genome resequencing approach and phenotyped it under drought stress environments for two consecutive years (2013-14 and 2014-15). A total of 52.02 billion clean reads containing 4.67 TB clean data were generated on the 1136 MAGIC lines and eight parental lines. Alignment of clean data on to the reference genome enabled identification of a total, 932,172 of SNPs, 35,973 insertions, and 35,726 deletions among the parental lines. A high-density genetic map was constructed using 57,180 SNPs spanning a map distance of 1606.69 cM. Using compressed mixed linear model, genome-wide association study (GWAS) enabled us to identify 737 markers significantly associated with days to 50% flowering, days to maturity, plant height, 100 seed weight, biomass, and harvest index. In addition to the GWAS approach, an identity-by-descent (IBD)-based mixed model approach was used to map quantitative trait loci (QTLs). The IBD-based mixed model approach detected major QTLs that were comparable to those from the GWAS analysis as well as some exclusive QTLs with smaller effects. The candidate genes like FRIGIDA and CaTIFY4b can be used for enhancing drought tolerance in chickpea. The genomic resources, genetic map, marker-trait associations, and QTLs identified in the study are valuable resources for the chickpea community for developing climate resilient chickpeas., (© 2023 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
46. Genomic approaches to enhance adaptive plasticity to cope with soil constraints amidst climate change in wheat.
- Author
-
Bhoite R, Han Y, Chaitanya AK, Varshney RK, and Sharma DL
- Subjects
- Climate Change, Epigenesis, Genetic, Adaptation, Physiological genetics, Genomics, Triticum genetics, Soil
- Abstract
Climate change is varying the availability of resources, soil physicochemical properties, and rainfall events, which collectively determines soil physical and chemical properties. Soil constraints-acidity (pH < 6), salinity (pH ≤ 8.5), sodicity, and dispersion (pH > 8.5)-are major causes of wheat yield loss in arid and semiarid cropping systems. To cope with changing environments, plants employ adaptive strategies such as phenotypic plasticity, a key multifaceted trait, to promote shifts in phenotypes. Adaptive strategies for constrained soils are complex, determined by key functional traits and genotype × environment × management interactions. The understanding of the molecular basis of stress tolerance is particularly challenging for plasticity traits. Advances in sequencing and high-throughput genomics technologies have identified functional alleles in gene-rich regions, haplotypes, candidate genes, mechanisms, and in silico gene expression profiles at various growth developmental stages. Our review focuses on favorable alleles for enhanced gene expression, quantitative trait loci, and epigenetic regulation of plant responses to soil constraints, including heavy metal stress and nutrient limitations. A strategy is then described for quantitative traits in wheat by investigating significant alleles and functional characterization of variants, followed by gene validation using advanced genomic tools, and marker development for molecular breeding and genome editing. Moreover, the review highlights the progress of gene editing in wheat, multiplex gene editing, and novel alleles for smart control of gene expression. Application of these advanced genomic technologies to enhance plasticity traits along with soil management practices will be an effective tool to build yield, stability, and sustainability on constrained soils in the face of climate change., (© 2023 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
47. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits.
- Author
-
Lu Q, Huang L, Liu H, Garg V, Gangurde SS, Li H, Chitikineni A, Guo D, Pandey MK, Li S, Liu H, Wang R, Deng Q, Du P, Varshney RK, Liang X, Hong Y, and Chen X
- Subjects
- Chromosome Mapping, Phenotype, Genomics, Genome, Plant genetics, Arachis genetics, Genome-Wide Association Study
- Abstract
Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement., (© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
48. Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat (Triticum aestivum L.).
- Author
-
Sihag P, Kumar U, Sagwal V, Kapoor P, Singh Y, Mehla S, Balyan P, Mir RR, Varshney RK, Singh KP, and Dhankher OP
- Subjects
- Heat-Shock Response genetics, Edible Grain genetics, Proline genetics, Gene Expression, Sugars, Triticum genetics, Bread
- Abstract
The grain-filling stage in Triticum aestivum (wheat) is highly vulnerable to increasing temperature as terminal heat stress diminishes grain quality and yield. To examine the mechanism of terminal heat tolerance, we performed the biochemical and gene expression analyses using two heat-tolerant (WH730 and WH1218) and two heat-sensitive (WH711 and WH157) wheat genotypes. We observed a significant increase in total soluble sugar (25%-47%), proline (7%-15%), and glycine betaine (GB) (22%-34%) contents in flag leaf, whereas a decrease in grain-filling duration, 1000-kernel weight (8%-25%), and grain yield per plant (11%-23%) was observed under the late-sown compared to the timely sown. The maximum content of osmolytes, including total soluble sugar, proline, and GB, was observed in heat-tolerant genotypes compared to heat-sensitive genotypes. The expression of 10 heat-responsive genes associated with heat shock proteins (sHsp-1, Hsp17, and HsfA4), flavonoid biosynthesis (F3'-1 and PAL), β-glucan synthesis (CslF6 and CslH), and xyloglucan metabolism (XTH1, XTH2, and XTH5) was studied in flag leaf exposed to different heat treatments (34, 36, 38, and 40°C) at 15 days after anthesis by quantitative real-time polymerase chain reaction. A significant increase in the relative fold expression of these genes with increasing temperature indicated their involvement in providing heat-stress tolerance. The high differential expression of most of the genes in heat-tolerant genotype "WH730" followed by "WH1218" indicates the high adaptability of these genotypes to heat stress compared to heat-sensitive wheat genotypes. Based on the previous results, "WH730" performed better in terms of maximum osmolyte accumulation, grain yield, and gene expression under heat stress., (© 2023 CCS Haryana Agricultural University. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
49. Cell-type proteomic and metabolomic resolution of early and late grain filling stages of wheat endosperm.
- Author
-
Zhang S, Ghatak A, Mohammadi Bazargani M, Kramml H, Zang F, Gao S, Ramšak Ž, Gruden K, Varshney RK, Jiang D, Chaturvedi P, and Weckwerth W
- Subjects
- Proteome metabolism, Proteomics, Antiviral Agents metabolism, Plant Proteins genetics, Plant Proteins metabolism, Edible Grain, Starch metabolism, Sugars metabolism, Endosperm metabolism, Triticum metabolism
- Abstract
The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes., (© 2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
50. Advances and opportunities in unraveling cold-tolerance mechanisms in the world's primary staple food crops.
- Author
-
Jan S, Rustgi S, Barmukh R, Shikari AB, Leske B, Bekuma A, Sharma D, Ma W, Kumar U, Kumar U, Bohra A, Varshney RK, and Mir RR
- Subjects
- Crops, Agricultural genetics, Cold Temperature, Cold-Shock Response, Plant Proteins genetics, Plant Proteins metabolism, Transcription Factors genetics
- Abstract
Temperatures below or above optimal growth conditions are among the major stressors affecting productivity, end-use quality, and distribution of key staple crops including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays L.). Among temperature stresses, cold stress induces cellular changes that cause oxidative stress and slowdown metabolism, limit growth, and ultimately reduce crop productivity. Perception of cold stress by plant cells leads to the activation of cold-responsive transcription factors and downstream genes, which ultimately impart cold tolerance. The response triggered in crops to cold stress includes gene expression/suppression, the accumulation of sugars upon chilling, and signaling molecules, among others. Much of the information on the effects of cold stress on perception, signal transduction, gene expression, and plant metabolism are available in the model plant Arabidopsis but somewhat lacking in major crops. Hence, a complete understanding of the molecular mechanisms by which staple crops respond to cold stress remain largely unknown. Here, we make an effort to elaborate on the molecular mechanisms employed in response to low-temperature stress. We summarize the effects of cold stress on the growth and development of these crops, the mechanism of cold perception, and the role of various sensors and transducers in cold signaling. We discuss the progress in cold tolerance research at the genome, transcriptome, proteome, and metabolome levels and highlight how these findings provide opportunities for designing cold-tolerant crops for the future., (© 2023 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.