1. Detection of tuberculosis using cough audio analysis: a deep learning approach with capsule networks
- Author
-
Sakthi Jaya Sundar Rajasekar, Anu Rithiga Balaraman, Deepa Varnika Balaraman, Saleem Mohamed Ali, Kannan Narasimhan, Narayanasamy Krishnasamy, and Varalakshmi Perumal
- Subjects
Tuberculosis ,Deep learning ,Capsule networks ,Cough audio analysis ,Computational linguistics. Natural language processing ,P98-98.5 ,Electronic computers. Computer science ,QA75.5-76.95 - Abstract
Abstract Purpose Tuberculosis (TB) is a widespread infectious disease that requires early detection for effective treatment and control. This study aims to improve TB detection using cough audio analysis, comparing the performance of capsule networks to other deep learning models. Methods We used cough audio recordings from 1105 individuals with a new or worsening cough for at least two weeks, totaling 9772 recordings. These recordings were processed into spectral images, and HOG features were extracted. Various models, including Capsule Networks + FCNN, CNN, VGG16, and ResNet50 were trained and evaluated. Results Capsule Networks + FCNN achieved the best performance with an accuracy of 0.97, sensitivity of 0.98, specificity of 0.96, F1 score of 0.97, and precision of 0.97, outperforming other models. This attribute is due to the model’s ability to learn complex features from spectral images. Conclusions This study concludes that Capsule Networks are more effective than typical CNN-based models in diagnosing TB from cough audio. This suggests that advanced deep learning frameworks could significantly enhance TB screening accuracy, especially in resource-limited areas.
- Published
- 2024
- Full Text
- View/download PDF