Sian Ellard, Jorge Ferrer, Javier García-Hurtado, Sarah E. Flanagan, Philippe Ravassard, Miguel A. Maestro, Elisa De Franco, Ildem Akerman, Gerhard Mittler, Andrew T. Hattersley, Lorenzo Piemonti, Vanessa Grau, University of Birmingham [Birmingham], Centre for Genomic Regulation [Barcelona] (CRG), Universitat Pompeu Fabra [Barcelona] (UPF)-Centro Nacional de Analisis Genomico [Barcelona] (CNAG), University of Exeter Medical School, University of Exeter, Max Planck Institute of Immunobiology and Epigenetics (MPI-IE), Max-Planck-Gesellschaft, Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), IRCCS Ospedale San Raffaele [Milan, Italy], Gestionnaire, Hal Sorbonne Université, Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Akerman, I., Maestro, M. A., De Franco, E., Grau, V., Flanagan, S., Garcia-Hurtado, J., Mittler, G., Ravassard, P., Piemonti, L., Ellard, S., Hattersley, A. T., Ferrer, J., and Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Summary Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene., Graphical abstract, Highlights • Mutations of a CC dinucleotide in the human INS promoter cause neonatal diabetes • We humanized ∼3.1 kb of mouse Ins2 and created a CC mutant version • Humanized Ins2, but not the CC mutant, recapitulates developmental chromatin activation • GLIS3, also mutated in diabetes, activates INS chromatin and requires an intact CC, Mutations in the CC element of the INS promoter or the transcription factor GLIS3 cause neonatal diabetes. Akerman et al. humanize a 3.1-kb region upstream of the mouse Ins2 gene and show that GLIS3 and the CC element form a pioneering mechanism that activates INS chromatin during pancreas development.