Anaya Castro, Maria Antonieta, Chimie Agro-Industrielle (CAI), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole nationale supérieure des ingénieurs en arts chimiques et technologiques-Institut National de la Recherche Agronomique (INRA), Université Toulouse III - Paul Sabatier, Sophie Girod-Fullana, Vanessa Durrieu, and ProdInra, Migration
In the pharmaceutical field, the oral route remains the preferred route of administration because it is simpler and better accepted by patients. However, this mode of administration is problematic for many active pharmaceutical ingredients (API) with low solubility, low permeability and/or instability in the gastrointestinal environment. Their microencapsulation in polymeric matrices can make them able to respond to these factors, especially if the microparticles generated resist the environments encountered during the gastrointestinal tract and then play a protective role, both for the API and for the mucous membranes encountered. The search for new excipients, from agroresources such as natural polymers, is booming. Vegetable proteins, thanks to their functional properties such as good solubility, relatively low viscosity, and emulsifying and film-forming properties, are preferred candidates. In addition, the great diversity of their functional groups makes it possible to envisage various chemical or enzymatic modifications. The aim of this work was to study the interest of soy protein as a coating material for API intended for the oral route, and more particularly as a candidate for the development of gastro-resistant forms. A soy protein isolate (SPI) was used as a coating material and the atomization as a process. Ibuprofen, a nonsteroidal anti-inflammatory drug, was chosen as a model molecule because of its low solubility requiring an improvement in its bioavailability, and its gastric side effects requiring an enteric shaping. Two chemical modifications of proteins (acylation and succinylation) have been studied in order to modify the solubility of the soy protein. These modifications were carried out in accordance with the principles of Green Chemistry, especially in the absence of organic solvent. The microcapsules obtained by spray-drying were characterized in terms of rate and encapsulation efficiency, morphology and size distribution of the particles, physical state of the encapsulated API and capacity of release in simulated gastric and intestinal medium. The results obtained validated the interest of the chemical modifications of the soy protein to modulate the release kinetics of API. The chemical modifications appeared particularly suitable for the encapsulation of hydrophobic active ingredients, and allowed to obtain ibuprofen release kinetics decreased to acidic pH (gastric). The last part of this work allowed to validate this last hypothesis by the realization of gastro-resistant forms on the model of MUPS tablets (multiple unit pellet system). The results of this exploratory work demonstrate that soy protein, combined with a multiparticle shaping process coupled with direct compression, can be a biosourced, environmentally friendly alternative (aqueous solvent handling, drying and compression steps reduced) and confident to the coating used in traditional gastroresistant forms., Dans le domaine pharmaceutique, la voie orale demeure la voie d’administration de prédilection, car plus simple et mieux acceptée par les patients. Cependant, ce mode d’administration pose problème pour de nombreux principes actifs (PA) présentant une faible solubilité, une faible perméabilité et/ou une instabilité dans l’environnement gastro-intestinal. Leur micro-encapsulation dans des matrices polymériques peut permettre d’y répondre, notamment si les microparticules générées résistent aux environnements rencontrés lors du tractus gastro-intestinal et jouent alors un rôle protecteur, tant pour le principe actif que pour les muqueuses rencontrées. La recherche de nouveaux excipients, issus des agro-ressources tels que les polymères naturels, est en plein essor. Les protéines végétales, grâce à leurs propriétés fonctionnelles telles qu’une bonne solubilité, une viscosité relativement basse, et des propriétés émulsifiantes et filmogènes, représentent des candidats privilégiés. De plus, la grande diversité de leurs groupements fonctionnels permet d’envisager des modifications chimiques ou enzymatiques variées. L’objectif de ce travail était d’étudier l’intérêt de la protéine de soja en tant que matériau enrobant de principes actifs pharmaceutiques destinés à la voie orale, et plus particulièrement en tant que candidat pour l’élaboration de formes gastro-résistantes. Un isolat protéique de soja (SPI) été utilisé comme matière enrobante et l’atomisation comme procédé. L’ibuprofène, anti-inflammatoire non stéroïdien, a été choisi comme molécule modèle du fait de sa faible solubilité nécessitant une amélioration de sa biodisponibilité, et de ses effets indésirables gastriques nécessitant une mise en forme entérique. Deux modifications chimiques des protéines (l’acylation et la succinylation) ont été étudiées dans le but de modifier la solubilité de la protéine de soja. Ces modifications ont été effectuées dans le respect des principes de la Chimie Verte, notamment en absence de solvant organique. Les microcapsules obtenues par atomisation ont été caractérisées en termes de taux et efficacité d'encapsulation, morphologie et distribution de tailles des particules, état physique du PA encapsulé et capacité de libération en milieu gastrique et intestinal simulé. Les résultats obtenus ont permis de valider l’intérêt des modifications chimiques de la protéine de soja pour moduler les cinétiques de libération d’actif. Les modifications chimiques sont apparues particulièrement adaptées pour l’encapsulation de principes actifs hydrophobes, et ont permis de l’obtention de cinétiques de libération d’ibuprofène ralenties à pH acide (gastrique). La dernière partie de ce travail a permis de valider cette dernière hypothèse par la réalisation de formes gastro-résistantes sur le modèle des comprimés MUPS (multiple unit pellet system). Les résultats de ce travail exploratoire démontrent que les protéines de soja, associées à un procédé de mise en forme multi-particulaire couplé à de la compression directe, peuvent constituer une alternative biosourcée, respectueuse de l’environnement (manipulation en solvant aqueux, temps de séchage et étapes de compression réduits) et sûre à l’enrobage utilisé dans les formes gastro-résistantes traditionnelles.