172 results on '"Vandeweyer, G."'
Search Results
2. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders
- Author
-
Wang T., Hoekzema K., Vecchio D., Wu H., Sulovari A., Coe B. P., Gillentine M. A., Wilfert A. B., Perez-Jurado L. A., Kvarnung M., Sleyp Y., Earl R. K., Rosenfeld J. A., Geisheker M. R., Han L., Du B., Barnett C., Thompson E., Shaw M., Carroll R., Friend K., Catford R., Palmer E. E., Zou X., Ou J., Li H., Guo H., Gerdts J., Avola E., Calabrese G., Elia M., Greco D., Lindstrand A., Nordgren A., Anderlid B. -M., Vandeweyer G., Van Dijck A., Van der Aa N., McKenna B., Hancarova M., Bendova S., Havlovicova M., Malerba G., Bernardina B. D., Muglia P., van Haeringen A., Hoffer M. J. V., Franke B., Cappuccio G., Delatycki M., Lockhart P. J., Manning M. A., Liu P., Scheffer I. E., Brunetti Pierri N., Rommelse N., Amaral D. G., Santen G. W. E., Trabetti E., Sedlacek Z., Michaelson J. J., Pierce K., Courchesne E., Kooy R. F., Acampado J., Ace A. J., Amatya A., Astrovskaya I., Bashar A., Brooks E., Butler M. E., Cartner L. A., Chin W., Chung W. K., Daniels A. M., Feliciano P., Fleisch C., Ganesan S., Jensen W., Lash A. E., Marini R., Myers V. J., O'Connor E., Rigby C., Robertson B. E., Shah N., Shah S., Singer E., Snyder L. A. G., Stephens A. N., Tjernagel J., Vernoia B. M., Volfovsky N., White L. C., Hsieh A., Shen Y., Zhou X., Turner T. N., Bahl E., Thomas T. R., Brueggeman L., Koomar T., Michael R. J., O'Roak B. J., Barnard R. A., Gibbs R. A., Muzny D., Sabo A., Ahmed K. L. B., Eichler E. E., Siegel M., Abbeduto L., Hilscher B. A., Li D., Smith K., Thompson S., Albright C., Butter E. M., Eldred S., Hanna N., Jones M., Coury D. L., Scherr J., Pifher T., Roby E., Dennis B., Higgins L., Brown M., Alessandri M., Gutierrez A., Hale M. N., Herbert L. M., Schneider H. L., David G., Annett R. D., Sarver D. E., Arriaga I., Camba A., Gulsrud A. C., Haley M., McCracken J. T., Sandhu S., Tafolla M., Yang W. S., Carpenter L. A., Bradley C. C., Gwynette F., Manning P., Shaffer R., Thomas C., Bernier R. A., Fox E. A., Gerdts J. A., Pepper M., Ho T., Cho D., Piven J., Lechniak H., Soorya L. V., Gordon R., Wainer A., Yeh L., Ochoa-Lubinoff C., Russo N., Berry-Kravis E., Booker S., Erickson C. A., Prock L. M., Pawlowski K. G., Matthews E. T., Brewster S. J., Hojlo M. A., Abada E., Lamarche E., Murali S. C., Harvey W. T., Kaplan H. E., Pierce K. L., DeMarco L., Horner S., Pandey J., Plate S., Sahin M., Riley K. D., Carmody E., Constantini J., Esler A., Fatemi A., Hutter H., Landa R. J., McKenzie A. P., Neely J., Singh V., Van Metre B., Wodka E. L., Fombonne E. J., Huang-Storms L. Y., Pacheco L. D., Mastel S. A., Coppola L. A., Francis S., Jarrett A., Jacob S., Lillie N., Gunderson J., Istephanous D., Simon L., Wasserberg O., Rachubinski A. L., Rosenberg C. R., Kanne S. M., Shocklee A. D., Takahashi N., Bridwell S. L., Klimczac R. L., Mahurin M. A., Cotrell H. E., Grant C. A., Hunter S. G., Martin C. L., Taylor C. M., Walsh L. K., Dent K. A., Mason A., Sziklay A., Smith C. J., Nordenskjold M., Romano C., Peeters H., Gecz J., Xia K., SPARK Consortium, Wang, T., Hoekzema, K., Vecchio, D., Wu, H., Sulovari, A., Coe, B. P., Gillentine, M. A., Wilfert, A. B., Perez-Jurado, L. A., Kvarnung, M., Sleyp, Y., Earl, R. K., Rosenfeld, J. A., Geisheker, M. R., Han, L., Du, B., Barnett, C., Thompson, E., Shaw, M., Carroll, R., Friend, K., Catford, R., Palmer, E. E., Zou, X., Ou, J., Li, H., Guo, H., Gerdts, J., Avola, E., Calabrese, G., Elia, M., Greco, D., Lindstrand, A., Nordgren, A., Anderlid, B. -M., Vandeweyer, G., Van Dijck, A., Van der Aa, N., Mckenna, B., Hancarova, M., Bendova, S., Havlovicova, M., Malerba, G., Bernardina, B. D., Muglia, P., van Haeringen, A., Hoffer, M. J. V., Franke, B., Cappuccio, G., Delatycki, M., Lockhart, P. J., Manning, M. A., Liu, P., Scheffer, I. E., Brunetti Pierri, N., Rommelse, N., Amaral, D. G., Santen, G. W. E., Trabetti, E., Sedlacek, Z., Michaelson, J. J., Pierce, K., Courchesne, E., Kooy, R. F., Acampado, J., Ace, A. J., Amatya, A., Astrovskaya, I., Bashar, A., Brooks, E., Butler, M. E., Cartner, L. A., Chin, W., Chung, W. K., Daniels, A. M., Feliciano, P., Fleisch, C., Ganesan, S., Jensen, W., Lash, A. E., Marini, R., Myers, V. J., O'Connor, E., Rigby, C., Robertson, B. E., Shah, N., Shah, S., Singer, E., Snyder, L. A. G., Stephens, A. N., Tjernagel, J., Vernoia, B. M., Volfovsky, N., White, L. C., Hsieh, A., Shen, Y., Zhou, X., Turner, T. N., Bahl, E., Thomas, T. R., Brueggeman, L., Koomar, T., Michael, R. J., O'Roak, B. J., Barnard, R. A., Gibbs, R. A., Muzny, D., Sabo, A., Ahmed, K. L. B., Eichler, E. E., Siegel, M., Abbeduto, L., Hilscher, B. A., Li, D., Smith, K., Thompson, S., Albright, C., Butter, E. M., Eldred, S., Hanna, N., Jones, M., Coury, D. L., Scherr, J., Pifher, T., Roby, E., Dennis, B., Higgins, L., Brown, M., Alessandri, M., Gutierrez, A., Hale, M. N., Herbert, L. M., Schneider, H. L., David, G., Annett, R. D., Sarver, D. E., Arriaga, I., Camba, A., Gulsrud, A. C., Haley, M., Mccracken, J. T., Sandhu, S., Tafolla, M., Yang, W. S., Carpenter, L. A., Bradley, C. C., Gwynette, F., Manning, P., Shaffer, R., Thomas, C., Bernier, R. A., Fox, E. A., Gerdts, J. A., Pepper, M., Ho, T., Cho, D., Piven, J., Lechniak, H., Soorya, L. V., Gordon, R., Wainer, A., Yeh, L., Ochoa-Lubinoff, C., Russo, N., Berry-Kravis, E., Booker, S., Erickson, C. A., Prock, L. M., Pawlowski, K. G., Matthews, E. T., Brewster, S. J., Hojlo, M. A., Abada, E., Lamarche, E., Murali, S. C., Harvey, W. T., Kaplan, H. E., Pierce, K. L., Demarco, L., Horner, S., Pandey, J., Plate, S., Sahin, M., Riley, K. D., Carmody, E., Constantini, J., Esler, A., Fatemi, A., Hutter, H., Landa, R. J., Mckenzie, A. P., Neely, J., Singh, V., Van Metre, B., Wodka, E. L., Fombonne, E. J., Huang-Storms, L. Y., Pacheco, L. D., Mastel, S. A., Coppola, L. A., Francis, S., Jarrett, A., Jacob, S., Lillie, N., Gunderson, J., Istephanous, D., Simon, L., Wasserberg, O., Rachubinski, A. L., Rosenberg, C. R., Kanne, S. M., Shocklee, A. D., Takahashi, N., Bridwell, S. L., Klimczac, R. L., Mahurin, M. A., Cotrell, H. E., Grant, C. A., Hunter, S. G., Martin, C. L., Taylor, C. M., Walsh, L. K., Dent, K. A., Mason, A., Sziklay, A., Smith, C. J., Nordenskjold, M., Romano, C., Peeters, H., Gecz, J., and Xia, K.
- Subjects
0301 basic medicine ,Male ,CCCTC-Binding Factor ,Transcription Factor ,Basic Helix-Loop-Helix Transcription Factor ,DNA Mutational Analysis ,General Physics and Astronomy ,RNA-Binding Protein ,Heterogeneous-Nuclear Ribonucleoprotein U ,VARIANTS ,medicine.disease_cause ,Cohort Studies ,0302 clinical medicine ,Neurodevelopmental Disorder ,Basic Helix-Loop-Helix Transcription Factors ,SPARK Consortium ,2.1 Biological and endogenous factors ,Copy-number variation ,Aetiology ,lcsh:Science ,GABRG2 ,Genetics ,Mutation ,Multidisciplinary ,biology ,Neurodevelopmental disorders ,RNA-Binding Proteins ,High-Throughput Nucleotide Sequencing ,Autism spectrum disorders ,Multidisciplinary Sciences ,DNA-Binding Proteins ,Science & Technology - Other Topics ,Female ,Case-Control Studie ,Engineering sciences. Technology ,Human ,Science ,DNA-Binding Protein ,Genetic Association Studie ,COPY-NUMBER VARIATION ,General Biochemistry, Genetics and Molecular Biology ,DNA sequencing ,Article ,KCNQ3 Potassium Channel ,DNA Mutational Analysi ,03 medical and health sciences ,medicine ,Humans ,Genetic Predisposition to Disease ,AUTISM ,Gene ,Genetic Association Studies ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,Science & Technology ,DISABILITY ,Prevention ,Case-control study ,General Chemistry ,Repressor Protein ,medicine.disease ,FRAMEWORK ,Repressor Proteins ,DE-NOVO MUTATION ,030104 developmental biology ,CTCF ,Neurodevelopmental Disorders ,Case-Control Studies ,biology.protein ,Next-generation sequencing ,Autism ,lcsh:Q ,Cohort Studie ,030217 neurology & neurosurgery ,Transcription Factors - Abstract
Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case–control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF, For many neurodevelopmental disorder (NDD) risk genes, the significance for mutational burden is unestablished. Here, the authors sequence 125 candidate NDD genes in over 16,000 NDD cases; case-control mutational burden analysis identifies 48 genes with a significant burden of severe ultra-rare mutations.
- Published
- 2020
3. Copy number variation analysis in bicuspid aortic valve-related aortopathy identifies TBX20 as a contributing gene
- Author
-
Luyckx, I, Kumar, AA, Reyniers, E, Dekeyser, E, Vanderstraeten, K, Vandeweyer, G, Wunnemann, F, Preuss, C, Mazzella, JM, Goudot, G, Messas, E, Albuisson, J, Jeunemaitre, X, Eriksson, P, Mohamed, SA, Kempers, M, Salemink, S, Duijnhouwer, A, Andelfinger, G, Dietz, HC, Verstraeten, A (Aline), Van Laer, L, Loeys, BL, Zhurayev, R, Zerbino, D, Mital, S, Mertens, L, Franco-Cereceda, A, Verhagen, Judith, De Graaf - van de Laar, Ingrid, Wessels, Marja, Nemcikova, M, Krebsova, A, Clinical Genetics, MIBAVA Leducq Consortium, Goudot, Guillaume, University of Antwerp (UA), Centre de recherche du CHU Sainte-Justine / Research Center of the Sainte-Justine University Hospital [Montreal, Canada], Université de Montréal (UdeM)-CHU Sainte Justine [Montréal], The Jackson Laboratory [Bar Harbor] (JAX), Centre de Réféfence des Maladies Vasculaires Rares [HEGP, APHP] (CRMVR), Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Université Paris Descartes - Paris 5 (UPD5), Karolinska Institutet [Stockholm], Karolinska University Hospital [Stockholm], University Medical Center of Schleswig–Holstein = Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Radboud University Medical Center [Nijmegen], Howard Hughes Medical Institute (HHMI), Johns Hopkins University School of Medicine [Baltimore], and MIBAVA Leducq Consortium: Rustam Zhurayev, Dmytro Zerbino, Seema Mital, Luc Mertens, Anders Franco-Cereceda, Judith M A Verhagen, Ingrid M B H van de Laar, Marja W Wessels, Michaela Nemcikova, Alice Krebsova
- Subjects
Adult ,Heart Defects, Congenital ,Male ,Candidate gene ,DNA Copy Number Variations ,[SDV]Life Sciences [q-bio] ,Vascular damage Radboud Institute for Health Sciences [Radboudumc 16] ,Population ,Heart Valve Diseases ,Genome-wide association study ,Disease ,complex mixtures ,Article ,03 medical and health sciences ,Aortic aneurysm ,All institutes and research themes of the Radboud University Medical Center ,Bicuspid aortic valve ,Bicuspid Aortic Valve Disease ,Databases, Genetic ,parasitic diseases ,Genetics ,medicine ,Humans ,Copy-number variation ,education ,Biology ,Genetics (clinical) ,0303 health sciences ,education.field_of_study ,Aortic Aneurysm, Thoracic ,business.industry ,030305 genetics & heredity ,Middle Aged ,medicine.disease ,Phenotype ,digestive system diseases ,[SDV] Life Sciences [q-bio] ,Chemistry ,Aortic Valve ,Female ,Human medicine ,T-Box Domain Proteins ,business ,Genome-Wide Association Study ,Rare cancers Radboud Institute for Health Sciences [Radboudumc 9] - Abstract
International audience; Bicuspid aortic valve (BAV) is the most common congenital heart defect (CHD), affecting 1-2% of the population. BAV is associated with thoracic aortic aneurysms (TAAs). Deleterious copy number variations (CNVs) were found previously in up to 10% of CHD cases. This study aimed at unravelling the contribution of deleterious deletions or duplications in 95 unrelated BAV/TAA patients. Seven unique or rare CNVs were validated, harbouring protein-coding genes with a role in the cardiovascular system. Based on the presence of overlapping CNVs in patients with cardiovascular phenotypes in the DECIPHER database, the identification of similar CNVs in whole-exome sequencing data of 67 BAV/TAA patients and suggested topological domain involvement from Hi-C data, supportive evidence was obtained for two genes (DGCR6 and TBX20) of the seven initially validated CNVs. A rare variant burden analysis using next-generation sequencing data from 637 BAV/TAA patients was performed for these two candidate genes. This revealed a suggestive genetic role for TBX20 in BAV/TAA aetiology, further reinforced by segregation of a rare TBX20 variant with the phenotype within a BAV/TAA family. To conclude, our results do not confirm a significant contribution for deleterious CNVs in BAV/TAA as only one potentially pathogenic CNV (1.05%) was identified. We cannot exclude the possibility that BAV/TAA is occasionally attributed to causal CNVs though, or that certain CNVs act as genetic risk factors by creating a sensitised background for BAV/TAA. Finally, accumulative evidence for TBX20 involvement in BAV/TAA aetiology underlines the importance of this transcription factor in cardiovascular disease.
- Published
- 2019
4. Challenges and opportunities in the investigation of unexplained intellectual disability using family-based whole-exome sequencing
- Author
-
Helsmoortel, C., Vandeweyer, G., Ordoukhanian, P., Van Nieuwerburgh, F., Van der Aa, N., and Kooy, R. F.
- Published
- 2015
- Full Text
- View/download PDF
5. Resequencing of candidate genes for Keratoconus reveals a role for Ehlers-Danlos Syndrome genes
- Author
-
Fransen, E., Valgaeren, H., Janssens, K., Sommen, M., Ridder, R. de, Vandeweyer, G., Bisceglia, L., Soler, V., Hoischen, A., Mortier, G., Malecaze, F., Koppen, C., Camp, G. van, Fransen, E., Valgaeren, H., Janssens, K., Sommen, M., Ridder, R. de, Vandeweyer, G., Bisceglia, L., Soler, V., Hoischen, A., Mortier, G., Malecaze, F., Koppen, C., and Camp, G. van
- Abstract
Item does not contain fulltext, The involvement of genetic factors in the pathogenesis of KC has long been recognized but the identification of variants affecting the underlying protein functions has been challenging. In this study, we selected 34 candidate genes for KC based on previous whole-exome sequencing (WES) and the literature, and resequenced them in 745 KC patients and 810 ethnically matched controls from Belgium, France and Italy. Data analysis was performed using the single variant association test as well as gene-based mutation burden and variance components tests. In our study, we detected enrichment of genetic variation across multiple gene-based tests for the genes COL2A1, COL5A1, TNXB, and ZNF469. The top hit in the single variant association test was obtained for a common variant in the COL12A1 gene. These associations were consistently found across independent subpopulations. Interestingly, COL5A1, TNXB, ZNF469 and COL12A1 are all known Ehlers-Danlos Syndrome (EDS) genes. Though the co-occurrence of KC and EDS has been reported previously, this study is the first to demonstrate a consistent role of genetic variants in EDS genes in the etiology of KC. In conclusion, our data show a shared genetic etiology between KC and EDS, and clearly confirm the currently disputed role of ZNF469 in disease susceptibility for KC.
- Published
- 2021
6. Author Correction: Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders (Nature Communications, (2020), 11, 1, (4932), 10.1038/s41467-020-18723-y)
- Author
-
Wang, T., Hoekzema, K., Vecchio, Davide., Wu, H., Sulovari, A., Coe, B. P., Gillentine, M. A., Wilfert, A. B., Perez-Jurado, L. A., Kvarnung, M., Sleyp, Y., Earl, R. K., Rosenfeld, J. A., Geisheker, M. R., Han, L., Du, B., Barnett, C., Thompson, E., Shaw, M., Carroll, R., Friend, K., Catford, R., Palmer, E. E., Zou, X., Ou, J., Li, H., Guo, H., Gerdts, J., Avola, E., Calabrese, Giuseppe, Elia, Maurizio., Greco, Donatella, Lindstrand, A., Nordgren, A., Anderlid, B. -M., Vandeweyer, G., Van Dijck, A., Van der Aa, N., Mckenna, B., Hancarova, M., Bendova, S., Havlovicova, M., Malerba, G., Bernardina, B. D., Muglia, P., van Haeringen, A., Hoffer, M. J. V., Franke, B., Cappuccio, G., Delatycki, M., Lockhart, P. J., Manning, M. A., Liu, P., Scheffer, I. E., Brunetti-Pierri, N., Rommelse, N., Amaral, D. G., Santen, G. W. E., Trabetti, E., Sedlacek, Z., Michaelson, J. J., Pierce, K., Courchesne, E., Kooy, R. F., Acampado, J., Ace, A. J., Amatya, A., Astrovskaya, I., Bashar, A., Brooks, E., Butler, M. E., Cartner, L. A., Chin, W., Chung, W. K., Daniels, A. M., Feliciano, P., Fleisch, C., Ganesan, S., Jensen, W., Lash, A. E., Marini, R., Myers, V. J., O'Connor, E., Rigby, C., Robertson, B. E., Shah, N., Shah, S., Singer, E., Snyder, L. A. G., Stephens, A. N., Tjernagel, J., Vernoia, B. M., Volfovsky, N., White, L. C., Hsieh, A., Shen, Y., Zhou, X., Turner, T. N., Bahl, E., Thomas, T. R., Brueggeman, L., Koomar, T., O'Roak, B. J., Barnard, R. A., Gibbs, R. A., Muzny, D., Sabo, A., Ahmed, K. L. B., Eichler, E. E., Siegel, M., Abbeduto, L., Hilscher, B. A., Li, D., Smith, K., Thompson, S., Albright, C., Butter, E. M., Eldred, S., Hanna, N., Jones, M., Coury, D. L., Scherr, J., Pifher, T., Roby, E., Dennis, B., Higgins, L., Brown, M., Alessandri, M., Gutierrez, A., Hale, M. N., Herbert, L. M., Schneider, H. L., David, G., Annett, R. D., Sarver, D. E., Arriaga, I., Camba, A., Gulsrud, A. C., Haley, M., Mccracken, J. T., Sandhu, S., Tafolla, M., Yang, W. S., Carpenter, L. A., Bradley, C. C., Gwynette, F., Manning, P., Shaffer, R., Thomas, C., Bernier, R. A., Fox, E. A., Gerdts, J. A., Pepper, M., Ho, T., Cho, D., Piven, J., Lechniak, H., Soorya, L. V., Gordon, R., Wainer, A., Yeh, L., Ochoa-Lubinoff, C., Russo, N., Berry-Kravis, E., Booker, S., Erickson, C. A., Prock, L. M., Pawlowski, K. G., Matthews, E. T., Brewster, S. J., Hojlo, M. A., Abada, E., Lamarche, E., Murali, S. C., Harvey, W. T., Kaplan, H. E., Pierce, K. L., Demarco, L., Horner, S., Pandey, J., Plate, S., Sahin, M., Riley, K. D., Carmody, E., Constantini, J., Esler, A., Fatemi, A., Hutter, H., Landa, R. J., Mckenzie, A. P., Neely, J., Singh, V., Van Metre, B., Wodka, E. L., Fombonne, E. J., Huang-Storms, L. Y., Pacheco, L. D., Mastel, S. A., Coppola, L. A., Francis, S., Jarrett, A., Jacob, S., Lillie, N., Gunderson, J., Istephanous, D., Simon, L., Wasserberg, O., Rachubinski, A. L., Rosenberg, C. R., Kanne, S. M., Shocklee, A. D., Takahashi, N., Bridwell, S. L., Klimczac, R. L., Mahurin, M. A., Cotrell, H. E., Grant, C. A., Hunter, S. G., Martin, C. L., Taylor, C. M., Walsh, L. K., Dent, K. A., Mason, A., Sziklay, A., Smith, C. J., Nordenskjold, M., Romano, Corrado, Peeters, H., Gecz, J., and Xia, K.
- Published
- 2020
7. Overrepresentation of genetic variation in the AnkyrinG interactome is related to a range of neurodevelopmental disorders
- Author
-
Werf, I.M. van der, Jansen, S, Vries, P.F. de, Gerstmans, A., Vorst, M. van de, Dijck, A. Van, Vries, B.B.A. de, Gilissen, C., Hoischen, A., Vissers, L.E.L.M., Kooy, R.F., Vandeweyer, G., Werf, I.M. van der, Jansen, S, Vries, P.F. de, Gerstmans, A., Vorst, M. van de, Dijck, A. Van, Vries, B.B.A. de, Gilissen, C., Hoischen, A., Vissers, L.E.L.M., Kooy, R.F., and Vandeweyer, G.
- Abstract
Contains fulltext : 229283.pdf (Publisher’s version ) (Closed access), Upon the discovery of numerous genes involved in the pathogenesis of neurodevelopmental disorders, several studies showed that a significant proportion of these genes converge on common pathways and protein networks. Here, we used a reversed approach, by screening the AnkyrinG protein-protein interaction network for genetic variation in a large cohort of 1009 cases with neurodevelopmental disorders. We identified a significant enrichment of de novo potentially disease-causing variants in this network, confirming that this protein network plays an important role in the emergence of several neurodevelopmental disorders.
- Published
- 2020
8. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders
- Author
-
Wang, T., Hoekzema, K., Vecchio, D., Wu, H., Sulovari, A., Coe, B.P., Gillentine, M.A., Wilfert, A.B., Perez-Jurado, L.A., Kvarnung, M., Sleyp, Y., Earl, R.K., Rosenfeld, J.A., Geisheker, M.R., Han, L., Du, B., Barnett, C., Thompson, E., Shaw, M., Carroll, R., Friend, K., Catford, R., Palmer, E.E., Zou, X., Ou, J., Li, H., Guo, H, Gerdts, J., Avola, E., Calabrese, G., Elia, M., Greco, D., Lindstrand, A., Nordgren, A., Anderlid, B.M., Vandeweyer, G., Dijck, A. Van, Aa, N. van der, McKenna, B., Hancarova, M., Bendova, S., Havlovicova, M., Malerba, G., Bernardina, B.D., Muglia, P., Haeringen, A. van, Hoffer, M.J.V., Franke, B., Cappuccio, G., Delatycki, M., Lockhart, P.J., Manning, M.A., Liu, P, Scheffer, I.E., Brunetti-Pierri, N., Rommelse, N.N.J., Amaral, D.G., Santen, G.W.E., Trabetti, E., Sedláček, Z., Michaelson, J.J., Pierce, K., Courchesne, E., Kooy, R.F., Nordenskjöld, M., Romano, C, Peeters, H, Bernier, R.A., Gecz, J., Xia, K., Eichler, E.E., Wang, T., Hoekzema, K., Vecchio, D., Wu, H., Sulovari, A., Coe, B.P., Gillentine, M.A., Wilfert, A.B., Perez-Jurado, L.A., Kvarnung, M., Sleyp, Y., Earl, R.K., Rosenfeld, J.A., Geisheker, M.R., Han, L., Du, B., Barnett, C., Thompson, E., Shaw, M., Carroll, R., Friend, K., Catford, R., Palmer, E.E., Zou, X., Ou, J., Li, H., Guo, H, Gerdts, J., Avola, E., Calabrese, G., Elia, M., Greco, D., Lindstrand, A., Nordgren, A., Anderlid, B.M., Vandeweyer, G., Dijck, A. Van, Aa, N. van der, McKenna, B., Hancarova, M., Bendova, S., Havlovicova, M., Malerba, G., Bernardina, B.D., Muglia, P., Haeringen, A. van, Hoffer, M.J.V., Franke, B., Cappuccio, G., Delatycki, M., Lockhart, P.J., Manning, M.A., Liu, P, Scheffer, I.E., Brunetti-Pierri, N., Rommelse, N.N.J., Amaral, D.G., Santen, G.W.E., Trabetti, E., Sedláček, Z., Michaelson, J.J., Pierce, K., Courchesne, E., Kooy, R.F., Nordenskjöld, M., Romano, C, Peeters, H, Bernier, R.A., Gecz, J., Xia, K., and Eichler, E.E.
- Abstract
Contains fulltext : 229260.pdf (publisher's version ) (Open Access), Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.
- Published
- 2020
9. Author Correction: Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders (Nature Communications, (2020), 11, 1, (4932), 10.1038/s41467-020-18723-y)
- Author
-
Wang, T, Hoekzema, K, Vecchio, D, Wu, H, Sulovari, A, Coe, BP, Gillentine, MA, Wilfert, AB, Perez-Jurado, LA, Kvarnung, M, Sleyp, Y, Earl, RK, Rosenfeld, JA, Geisheker, MR, Han, L, Du, B, Barnett, C, Thompson, E, Shaw, M, Carroll, R, Friend, K, Catford, R, Palmer, EE, Zou, X, Ou, J, Li, H, Guo, H, Gerdts, J, Avola, E, Calabrese, G, Elia, M, Greco, D, Lindstrand, A, Nordgren, A, Anderlid, BM, Vandeweyer, G, Van Dijck, A, Van der Aa, N, McKenna, B, Hancarova, M, Bendova, S, Havlovicova, M, Malerba, G, Bernardina, BD, Muglia, P, van Haeringen, A, Hoffer, MJV, Franke, B, Cappuccio, G, Delatycki, M, Lockhart, PJ, Manning, MA, Liu, P, Scheffer, IE, Brunetti-Pierri, N, Rommelse, N, Amaral, DG, Santen, GWE, Trabetti, E, Sedláček, Z, Michaelson, JJ, Pierce, K, Courchesne, E, Kooy, RF, Acampado, J, Ace, AJ, Amatya, A, Astrovskaya, I, Bashar, A, Brooks, E, Butler, ME, Cartner, LA, Chin, W, Chung, WK, Daniels, AM, Feliciano, P, Fleisch, C, Ganesan, S, Jensen, W, Lash, AE, Marini, R, Myers, VJ, O’Connor, E, Rigby, C, Robertson, BE, Shah, N, Shah, S, Singer, E, Snyder, LAG, Stephens, AN, Tjernagel, J, Vernoia, BM, Volfovsky, N, White, LC, Hsieh, A, Shen, Y, Zhou, X, Turner, TN, Bahl, E, Thomas, TR, Wang, T, Hoekzema, K, Vecchio, D, Wu, H, Sulovari, A, Coe, BP, Gillentine, MA, Wilfert, AB, Perez-Jurado, LA, Kvarnung, M, Sleyp, Y, Earl, RK, Rosenfeld, JA, Geisheker, MR, Han, L, Du, B, Barnett, C, Thompson, E, Shaw, M, Carroll, R, Friend, K, Catford, R, Palmer, EE, Zou, X, Ou, J, Li, H, Guo, H, Gerdts, J, Avola, E, Calabrese, G, Elia, M, Greco, D, Lindstrand, A, Nordgren, A, Anderlid, BM, Vandeweyer, G, Van Dijck, A, Van der Aa, N, McKenna, B, Hancarova, M, Bendova, S, Havlovicova, M, Malerba, G, Bernardina, BD, Muglia, P, van Haeringen, A, Hoffer, MJV, Franke, B, Cappuccio, G, Delatycki, M, Lockhart, PJ, Manning, MA, Liu, P, Scheffer, IE, Brunetti-Pierri, N, Rommelse, N, Amaral, DG, Santen, GWE, Trabetti, E, Sedláček, Z, Michaelson, JJ, Pierce, K, Courchesne, E, Kooy, RF, Acampado, J, Ace, AJ, Amatya, A, Astrovskaya, I, Bashar, A, Brooks, E, Butler, ME, Cartner, LA, Chin, W, Chung, WK, Daniels, AM, Feliciano, P, Fleisch, C, Ganesan, S, Jensen, W, Lash, AE, Marini, R, Myers, VJ, O’Connor, E, Rigby, C, Robertson, BE, Shah, N, Shah, S, Singer, E, Snyder, LAG, Stephens, AN, Tjernagel, J, Vernoia, BM, Volfovsky, N, White, LC, Hsieh, A, Shen, Y, Zhou, X, Turner, TN, Bahl, E, and Thomas, TR
- Abstract
The original version of this Article contained an error on page 5 of the Results section, which incorrectly read ‘They are characterized by craniofacial dysmorphisms (9/10), thin vermillion border and lips (4/7), and feeding difficulties (6/11), and exhibit neonatal hypotonia (10/7)’. The correct version states ‘They are characterized by craniofacial dysmorphisms (9/10), thin vermillion border and lips (4/7), and feeding difficulties (6/11), and exhibit neonatal hypotonia (7/10)’.
- Published
- 2020
10. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders (vol 11, 4932, 2020)
- Author
-
Wang, T, Hoekzema, K, Vecchio, D, Wu, H, Sulovari, A, Coe, BP, Gillentine, MA, Wilfert, AB, Perez-Jurado, LA, Kvarnung, M, Sleyp, Y, Earl, RK, Rosenfeld, JA, Geisheker, MR, Han, L, Du, B, Barnett, C, Thompson, E, Shaw, M, Carroll, R, Friend, K, Catford, R, Palmer, EE, Zou, X, Ou, J, Li, H, Guo, H, Gerdts, J, Avola, E, Calabrese, G, Elia, M, Greco, D, Lindstrand, A, Nordgren, A, Anderlid, B-M, Vandeweyer, G, Van Dijck, A, Van der Aa, N, McKenna, B, Hancarova, M, Bendova, S, Havlovicova, M, Malerba, G, Bernardina, BD, Muglia, P, van Haeringen, A, Hoffer, MJV, Franke, B, Cappuccio, G, Delatycki, M, Lockhart, PJ, Manning, MA, Liu, P, Scheffer, IE, Brunetti-Pierri, N, Rommelse, N, Amaral, DG, Santen, GWE, Trabetti, E, Sedlacek, Z, Michaelson, JJ, Pierce, K, Courchesne, E, Kooy, RF, Nordenskjold, M, Romano, C, Peeters, H, Bernier, RA, Gecz, J, Xia, K, Eichler, EE, Wang, T, Hoekzema, K, Vecchio, D, Wu, H, Sulovari, A, Coe, BP, Gillentine, MA, Wilfert, AB, Perez-Jurado, LA, Kvarnung, M, Sleyp, Y, Earl, RK, Rosenfeld, JA, Geisheker, MR, Han, L, Du, B, Barnett, C, Thompson, E, Shaw, M, Carroll, R, Friend, K, Catford, R, Palmer, EE, Zou, X, Ou, J, Li, H, Guo, H, Gerdts, J, Avola, E, Calabrese, G, Elia, M, Greco, D, Lindstrand, A, Nordgren, A, Anderlid, B-M, Vandeweyer, G, Van Dijck, A, Van der Aa, N, McKenna, B, Hancarova, M, Bendova, S, Havlovicova, M, Malerba, G, Bernardina, BD, Muglia, P, van Haeringen, A, Hoffer, MJV, Franke, B, Cappuccio, G, Delatycki, M, Lockhart, PJ, Manning, MA, Liu, P, Scheffer, IE, Brunetti-Pierri, N, Rommelse, N, Amaral, DG, Santen, GWE, Trabetti, E, Sedlacek, Z, Michaelson, JJ, Pierce, K, Courchesne, E, Kooy, RF, Nordenskjold, M, Romano, C, Peeters, H, Bernier, RA, Gecz, J, Xia, K, and Eichler, EE
- Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Published
- 2020
11. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders
- Author
-
Wang, T, Hoekzema, K, Vecchio, D, Wu, H, Sulovari, A, Coe, BP, Gillentine, MA, Wilfert, AB, Perez-Jurado, LA, Kvarnung, M, Sleyp, Y, Earl, RK, Rosenfeld, JA, Geisheker, MR, Han, L, Du, B, Barnett, C, Thompson, E, Shaw, M, Carroll, R, Friend, K, Catford, R, Palmer, EE, Zou, X, Ou, J, Li, H, Guo, H, Gerdts, J, Avola, E, Calabrese, G, Elia, M, Greco, D, Lindstrand, A, Nordgren, A, Anderlid, B-M, Vandeweyer, G, Van Dijck, A, Van der Aa, N, McKenna, B, Hancarova, M, Bendova, S, Havlovicova, M, Malerba, G, Dalla Bernardina, B, Muglia, P, van Haeringen, A, Hoffer, MJV, Franke, B, Cappuccio, G, Delatycki, M, Lockhart, PJ, Manning, MA, Liu, P, Scheffer, IE, Brunetti-Pierri, N, Rommelse, N, Amaral, DG, Santen, GWE, Trabetti, E, Sedlacek, Z, Michaelson, JJ, Pierce, K, Courchesne, E, Kooy, RF, Nordenskjold, M, Romano, C, Peeters, H, Bernier, RA, Gecz, J, Xia, K, Eichler, EE, Wang, T, Hoekzema, K, Vecchio, D, Wu, H, Sulovari, A, Coe, BP, Gillentine, MA, Wilfert, AB, Perez-Jurado, LA, Kvarnung, M, Sleyp, Y, Earl, RK, Rosenfeld, JA, Geisheker, MR, Han, L, Du, B, Barnett, C, Thompson, E, Shaw, M, Carroll, R, Friend, K, Catford, R, Palmer, EE, Zou, X, Ou, J, Li, H, Guo, H, Gerdts, J, Avola, E, Calabrese, G, Elia, M, Greco, D, Lindstrand, A, Nordgren, A, Anderlid, B-M, Vandeweyer, G, Van Dijck, A, Van der Aa, N, McKenna, B, Hancarova, M, Bendova, S, Havlovicova, M, Malerba, G, Dalla Bernardina, B, Muglia, P, van Haeringen, A, Hoffer, MJV, Franke, B, Cappuccio, G, Delatycki, M, Lockhart, PJ, Manning, MA, Liu, P, Scheffer, IE, Brunetti-Pierri, N, Rommelse, N, Amaral, DG, Santen, GWE, Trabetti, E, Sedlacek, Z, Michaelson, JJ, Pierce, K, Courchesne, E, Kooy, RF, Nordenskjold, M, Romano, C, Peeters, H, Bernier, RA, Gecz, J, Xia, K, and Eichler, EE
- Abstract
Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.
- Published
- 2020
12. 177P Dissecting the molecular landscape of resistance to ROS1 tyrosine kinase inhibitors with improved NSCLC pre-clinical models
- Author
-
Terrones, M., Deben, C., Ul Haq, F., Vandeweyer, G., de Beeck, K. Op, and van Camp, G.
- Published
- 2023
- Full Text
- View/download PDF
13. Genetic Overlaps in Mental Retardation, Autism and Schizophrenia
- Author
-
Kooy, R.F., primary, Van der Aa, N., additional, Vandeweyer, G., additional, Reyniers, E., additional, and Rooms, L., additional
- Published
- 2010
- Full Text
- View/download PDF
14. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome
- Author
-
van Bon, B W M, Mefford, H C, Menten, B, Koolen, D A, Sharp, A J, Nillesen, W M, Innis, J W, de Ravel, T J L, Mercer, C L, Fichera, M, Stewart, H, Connell, L E, Õunap, K, Lachlan, K, Castle, B, Van der Aa, N, van Ravenswaaij, C, Nobrega, M A, Serra-Juhé, C, Simonic, I, de Leeuw, N, Pfundt, R, Bongers, E M, Baker, C, Finnemore, P, Huang, S, Maloney, V K, Crolla, J A, van Kalmthout, M, Elia, M, Vandeweyer, G, Fryns, J P, Janssens, S, Foulds, N, Reitano, S, Smith, K, Parkel, S, Loeys, B, Woods, C G, Oostra, A, Speleman, F, Pereira, A C, Kurg, A, Willatt, L, Knight, S J L, Vermeesch, J R, Romano, C, Barber, J C, Mortier, G, Pérez-Jurado, L A, Kooy, F, Brunner, H G, Eichler, E E, Kleefstra, T, and de Vries, B B A
- Published
- 2009
- Full Text
- View/download PDF
15. Clinical Presentation of a Complex Neurodevelopmental Disorder Caused by Mutations in ADNP
- Author
-
Dijck, A. van, Vulto-van Silfhout, A.T., Cappuyns, E., Werf, I.M. van der, Mancini, G.M., Tzschach, A., Bernier, R., Gozes, I., Eichler, E.E., Romano, C., Lindstrand, A., Nordgren, A., Kvarnung, M., Kleefstra, T., Vries, B.B.A. de, Kury, S., Rosenfeld, J.A., Meuwissen, M.E., Vandeweyer, G., Kooy, R.F., Bakshi, M., Wilson, M., Berman, Y., Dickson, R., Fransen, E., Helsmoortel, C., Ende, J. van den, Aa, N. van der, Wijdeven, M.J. van de, Rosenblum, J., Monteiro, F., Kok, F., Quercia, N., Bowdin, S., Dyment, D., Chitayat, D., Alkhunaizi, E., Boonen, S.E., Keren, B., Jacquette, A., Faivre, L., Bezieau, S., Isidor, B., Riess, A., Moog, U., Lynch, S.A., McVeigh, T., Elpeleg, O., Smeland, M.F., Fannemel, M., Haeringen, A. van, Maas, S.M., Veenstra-Knol, H.E., Schouten, M., Willemsen, M.H., Marcelis, C.L., Ockeloen, C., Burgt, I. van der, Feenstra, I., Smagt, J. van der, Jezela-Stanek, A., Krajewska-Walasek, M., Gonzalez-Lamuno, D., Anderlid, B.M., Malmgren, H., Nordenskjold, M., Clement, E., Hurst, J., Metcalfe, K., Mansour, S., Lachlan, K., Clayton-Smith, J., Hendon, L.G., Abdulrahman, O.A., Morrow, E., McMillan, C., Gerdts, J., Peeden, J., Vergano, S.A.S., Valentino, C., Chung, W.K., Ozmore, J.R., Bedrosian-Sermone, S., Dennis, A., Treat, K., Hughes, S.S., Safina, N., Pichon, J.B. le, McGuire, M., Infante, E., Madan-Khetarpal, S., Desai, S., Benke, P., Krokosky, A., Cristian, I., Baker, L., Gripp, K., Stessman, H.A., Eichenberger, J., Jayakar, P., Pizzino, A., Manning, M.A., Slattery, L., ADNP Consortium, Universidad de Cantabria, ADNP Consortium, Human Genetics, ANS - Complex Trait Genetics, and Clinical Genetics
- Subjects
Male ,0301 basic medicine ,Pediatrics ,Autism Spectrum Disorder ,Autism ,Intellectual disability ,Cohort Studies ,Epilepsy ,0302 clinical medicine ,Genotype-phenotype distinction ,Neurodevelopmental disorder ,Neurodevelopmental Disorder ,Helsmoortel-Van der Aa syndrome ,Child ,ADNP ,Syndrome ,Hypotonia ,Autism spectrum disorder ,Child, Preschool ,Cohort ,Female ,Abnormalities ,medicine.symptom ,Multiple ,Rare cancers Radboud Institute for Health Sciences [Radboudumc 9] ,Adult ,medicine.medical_specialty ,Adolescent ,Nerve Tissue Proteins ,Article ,Young Adult ,03 medical and health sciences ,Intellectual Disability ,Helsmoortel-Van der Aa Síndrome ,medicine ,Genetics ,Humans ,Abnormalities, Multiple ,Preschool ,Biology ,Biological Psychiatry ,Homeodomain Proteins ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,business.industry ,Infant ,medicine.disease ,030104 developmental biology ,Neurodevelopmental Disorders ,Mutation ,Human medicine ,business ,030217 neurology & neurosurgery - Abstract
Background In genome-wide screening studies for de novo mutations underlying autism and intellectual disability, mutations in the ADNP gene are consistently reported among the most frequent. ADNP mutations have been identified in children with autism spectrum disorder comorbid with intellectual disability, distinctive facial features, and deficits in multiple organ systems. However, a comprehensive clinical description of the Helsmoortel-Van der Aa syndrome is lacking. Methods We identified a worldwide cohort of 78 individuals with likely disruptive mutations in ADNP from January 2014 to October 2016 through systematic literature search, by contacting collaborators, and through direct interaction with parents. Clinicians filled in a structured questionnaire on genetic and clinical findings to enable correlations between genotype and phenotype. Clinical photographs and specialist reports were gathered. Parents were interviewed to complement the written questionnaires. Results We report on the detailed clinical characterization of a large cohort of individuals with an ADNP mutation and demonstrate a distinctive combination of clinical features, including mild to severe intellectual disability, autism, severe speech and motor delay, and common facial characteristics. Brain abnormalities, behavioral problems, sleep disturbance, epilepsy, hypotonia, visual problems, congenital heart defects, gastrointestinal problems, short stature, and hormonal deficiencies are common comorbidities. Strikingly, individuals with the recurrent p.Tyr719* mutation were more severely affected. Conclusions This overview defines the full clinical spectrum of individuals with ADNP mutations, a specific autism subtype. We show that individuals with mutations in ADNP have many overlapping clinical features that are distinctive from those of other autism and/or intellectual disability syndromes. In addition, our data show preliminary evidence of a correlation between genotype and phenotype. This work was supported by grants from the European Research Area Networks Network of European Funding for Neuroscience Research through the Research Foundation–Flanders and the Chief Scientist Office–Ministry of Health (to RFK, GV, IG). This research was supported, in part, by grants from the Simons Foundation Autism Research Initiative (Grant No. SFARI 303241 to EEE) and National Institutes of Health (Grant No. R01MH101221 to EEE). This work was also supported by the Italian Ministry of Health and ‘5 per mille’ funding (to CR). For many individuals, sequencing was provided by research initiatives like the Care4Rare Research Consortium in Canada or the Deciphering Developmental Disorders (DDD) study in the UK. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (Grant No. HICF-1009–003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (Grant No. WT098051). The views expressed in this publication are those of the author(s) and not necessarily those of the Wellcome Trust or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South Research Ethics Committee, and GEN/284/12 granted by the Republic of Ireland Research Ethics Committee). The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network.
- Published
- 2019
16. Diagnostic implications of genetic copy number variation in epilepsy plus
- Author
-
Coppola, A., Cellini, E., Stamberger, H., Saarentaus, E., Cetica, V., Lal, D., Djemie, T., Bartnik-Glaska, M., Ceulemans, B., Helen Cross, J., Deconinck, T., Masi, S. D., Dorn, T., Guerrini, R., Hoffman-Zacharska, D., Kooy, F., Lagae, L., Lench, N., Lemke, J. R., Lucenteforte, E., Madia, F., Mefford, H. C., Morrogh, D., Nuernberg, P., Palotie, A., Schoonjans, A. -S., Striano, P., Szczepanik, E., Tostevin, A., Vermeesch, J. R., Van Esch, H., Van Paesschen, W., Waters, J. J., Weckhuysen, S., Zara, F., Jonghe, P. D., Sisodiya, S. M., Marini, C., Lehesjioki, A. -E., Craiu, D., Talvik, T., Caglayan, H., Serratosa, J., Sterbova, K., Moller, R. S., Hjalgrim, H., Lerche, H., Weber, Y., Helbig, I., von Spiczak, S., Barba, C., Bogaerts, A., Boni, A., Galizia, E. C., Chiari, S., Di Gacomo, G., Ferrari, A., Guarducci, S., Giglio, S., Holmgren, P., Leu, C., Melani, F., Novara, F., Pantaleo, M., Peeters, E., Pisano, T., Rosati, A., Sander, J., Schoeler, N., Stankiewicz, P., Striano, S., Suls, A., Traverso, M., Vandeweyer, G., Van Dijck, A., Zuffardi, O., Coppola, Antonietta, Cellini, Elena, Stamberger, Hannah, Saarentaus, Elmo, Cetica, Valentina, Lal, Denni, Djémié, Tania, Bartnik-Glaska, Magdalena, Ceulemans, Berten, Helen Cross, J., Deconinck, Tine, Masi, Salvatore De, Dorn, Thoma, Guerrini, Renzo, Hoffman-Zacharska, Dorotha, Kooy, Frank, Lagae, Lieven, Lench, Nichola, Lemke, Johannes R., Lucenteforte, Ersilia, Madia, Francesca, Mefford, Heather C., Morrogh, Deborah, Nuernberg, Peter, Palotie, Aarno, Schoonjans, An-Sofie, Striano, Pasquale, Szczepanik, Elzbieta, Tostevin, Anna, Vermeesch, Joris R., Van Esch, Hilde, Van Paesschen, Wim, Waters, Jonathan J, Weckhuysen, Sarah, Zara, Federico, Jonghe, Peter De, Sisodiya, Sanjay M., Marini, Carla, Lehesjioki, Anna-Elina, Craiu, Dana, Talvik, Tiina, Caglayan, Hande, Serratosa, Jose, Sterbova, Katalin, Møller, Rikke S., Hjalgrim, Helle, Lerche, Holger, Weber, Yvonne, Helbig, Ingo, von Spiczak, Sarah, Barba, Carmen, Bogaerts, Anneleen, Boni, Antonella, Galizia, Elisabeth Caruana, Chiari, Sara, Di Gacomo, Gianpiero, Ferrari, Annarita, Guarducci, Silvia, Giglio, Sabrina, Holmgren, Philip, Leu, Costin, Melani, Federico, Novara, Francesca, Pantaleo, Marilena, Peeters, Elke, Pisano, Tiziana, Rosati, Anna, Sander, Josemir, Schoeler, Natasha, Stankiewicz, Pawel, Striano, Salvatore, Suls, Arvid, Traverso, Monica, Vandeweyer, Geert, Van Dijck, Anke, and Zuffardi, Orsetta
- Subjects
epilepsy gene ,Epilepsy ,DNA Copy Number Variations ,Genotype ,Comorbidity ,array CGH ,copy number variants ,epilepsy genes ,SNP array ,Phenotype ,Neurology ,mental disorders ,Full‐length Original Research ,Humans ,copy number variant ,Genetic Predisposition to Disease ,Neurology (clinical) - Abstract
Summary Objective Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. Methods We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had “epilepsy plus,” defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. Results Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51‐6.68; P = 2.34 × 10−9). Meta‐analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. Significance The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large‐scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.
- Published
- 2019
17. Diagnostic implications of genetic copy number variation in epilepsy plus
- Author
-
Coppola, A1, 2, 3, Cellini, E4, Stamberger, H5, 6, 7, Saarentaus, E8, 9, 10, Cetica, V4, Lal, D10, 11, 12, Djémié, T5, 6, Bartnik-Glaska, M13, Ceulemans, B14, Cross, JH15, 16, 17, Deconinck, T5, De Masi S7, Dorn, T18, Guerrini, R, Hoffman-Zacharska, D14, Kooy, F19, Lagae, L20, Lench, N21, Lemke, JR22, Lucenteforte, E23, Madia, F25, Mefford, HC26, Morrogh, D21, Nuernberg, P27, Palotie, A11, Schoonjans, AS15, Striano, P28, Szczepanik, E29, Tostevin, A1, 2, Vermeesch, JR30, Van Esch H30, Van Paesschen W31, Waters, JJ21, Weckhuysen, S5, 6, 12, Zara, F25, De Jonghe P5, Sisodiya, SM1, Marini, C, EuroEPINOMICS-RES, Consortium, Lehesjioki AE, EpiCNV Consortium., Craiu, D, Talvik, T, Caglayan, H, Serratosa, J, Sterbova, K, Møller, Rs, Hjalgrim, H, Lerche, H, Weber, Y, Helbig, I, von Spiczak, S, Barba, C, Bogaerts, A, Boni, A, Galizia, Ec, Chiari, S, Di Gacomo, G, Ferrari, A, Garducci, S, Giglio, S, Holmgren, P, Leu, C, Melani, F, Novara, F, Pantaleo, M, Peeters, E, Pisano, T, Rosati, A, Sander, J, Schoeler, N, Stankiewicz, P, Striano, S, Suls, A, Traverso, M, Vandeweyer, G, Van Dijck, A, and Zuffardi, O.
- Subjects
epilepsy - Published
- 2019
18. Insufficient evidence for a role of SERPINF1 in otosclerosis
- Author
-
Valgaeren, Hanne, Sommen, Manou, Beyens, Matthias, Vandeweyer, G., Schrauwenz, Isabelle, Schepers, A., Kunst, H.P., Hoischen, A., Fransen, Erik, Camp, Guy Van, Valgaeren, Hanne, Sommen, Manou, Beyens, Matthias, Vandeweyer, G., Schrauwenz, Isabelle, Schepers, A., Kunst, H.P., Hoischen, A., Fransen, Erik, and Camp, Guy Van
- Abstract
Item does not contain fulltext
- Published
- 2019
19. Confirmation of the role of pathogenic SMAD6 variants in bicuspid aortic valve-related aortopathy
- Author
-
Luyckx, I., MacCarrick, G., Kempers, M.J.E., Meester, J. de, Geryl, C., Rombouts, O., Peeters, N., Claes, C., Boeckx, N., Sakalihasan, N., Jacquinet, A., Hoischen, A., Vandeweyer, G., Lent, S. Van, Saenen, J., Craenenbroeck, E. Van, Timmermans, J., Duijnhouwer, A.L., Dietz, H., Laer, L. Van, Loeys, B.L., Verstraeten, A., Luyckx, I., MacCarrick, G., Kempers, M.J.E., Meester, J. de, Geryl, C., Rombouts, O., Peeters, N., Claes, C., Boeckx, N., Sakalihasan, N., Jacquinet, A., Hoischen, A., Vandeweyer, G., Lent, S. Van, Saenen, J., Craenenbroeck, E. Van, Timmermans, J., Duijnhouwer, A.L., Dietz, H., Laer, L. Van, Loeys, B.L., and Verstraeten, A.
- Abstract
Item does not contain fulltext, Progressive dilatation of the thoracic aorta leads to thoracic aortic aneurysm (TAA), which is often asymptomatic but predisposes to lethal aortic dissections and ruptures. TAA is a common complication in patients with bicuspid aortic valve (BAV). Recently, rare loss-of-function SMAD6 variants were shown to contribute significantly to the genetic aetiology of BAV/TAA. Intriguingly, patients with craniosynostosis have also been reported to be explained molecularly by similar loss-of-function SMAD6 variants. While significantly reduced penetrance of craniosynostosis has been reported for the SMAD6 variants as such, near-complete penetrance is reached upon co-occurrence with a common BMP2 SNP risk allele. Here, we report on the results of a SMAD6-variant analysis in 473 unrelated non-syndromic TAA patients, of which the SMAD6-positive individuals were also studied for the presence of the BMP2 risk allele. Although only 14% of the TAA patients also presented BAV, all novel likely pathogenic SMAD6 variants (N = 7) were identified in BAV/TAA individuals, further establishing the role of SMAD6 variants to the aetiology of BAV/TAA and revealing limited contribution to TAA development in patients with a tricuspid aortic valve. Familial segregation studies confirmed reduced penetrance (82%) and variable clinical expressivity, with coarctation of the aorta being a common comorbidity. None of our six BMP2+/SMAD6+ patients presented with craniosynostosis. Hence, the proposed digenic model for craniosynostosis was not supported in the presented BAV/TAA cohort, suggesting that additional factors are at play. Finally, our data provide improved insights into the clinical spectrum of SMAD6-related BAV/TAA and has important implications for molecular diagnostics.
- Published
- 2019
20. Copy number variation analysis in bicuspid aortic valve-related aortopathy identifies TBX20 as a contributing gene
- Author
-
Luyckx, I., Kumar, A.A., Reyniers, Edwin, Dekeyser, Emily, Vanderstraeten, Kathleen, Vandeweyer, G., Kempers, M.J.E., Duijnhouwer, A.L., Loeys, B.L., Nemcikova, M., Krebsova, A., Luyckx, I., Kumar, A.A., Reyniers, Edwin, Dekeyser, Emily, Vanderstraeten, Kathleen, Vandeweyer, G., Kempers, M.J.E., Duijnhouwer, A.L., Loeys, B.L., Nemcikova, M., and Krebsova, A.
- Abstract
Item does not contain fulltext
- Published
- 2019
21. Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies
- Author
-
Cheng, H., Dharmadhikari, A.V., Varland, S., Ma, N., Domingo, D., Kleyner, R., Rope, A.F., Yoon, M., Stray-Pedersen, A., Posey, J.E., Crews, S.R., Eldomery, M.K., Akdemir, Z.C., Lewis, A.M., Sutton, V.R., Rosenfeld, J.A., Conboy, E., Agre, K., Xia, F., Walkiewicz, M., Longoni, M., High, F.A., Slegtenhorst, M.A. van, Mancini, G.M.S., Finnila, C.R., Haeringen, A. van, Hollander, N. den, Ruivenkamp, C., Naidu, S., Mahida, S., Palmer, E.E., Murray, L., Lim, D., Jayakar, P., Parker, M.J., Giusto, S., Stracuzzi, E., Romano, C, Beighley, J.S., Bernier, R.A., Kury, S., Nizon, M., Corbett, M.A., Shaw, M., Gardner, A., Barnett, C., Armstrong, R., Kassahn, K.S., Dijck, A. Van, Vandeweyer, G., Kleefstra, T., Schieving, J.H., Jongmans, M.C., Vries, B.B.A. de, Pfundt, R.P., Kerr, B., Rojas, S.K., Boycott, K.M., Person, R., Willaert, R., Eichler, E.E., Kooy, R.F., Yang, Y., Wu, J.C., Lupski, J.R., Arnesen, T., Cooper, G.M., Chung, W.K., Gecz, J., Stessman, H.A.F., Meng, L., Lyon, G.J., Cheng, H., Dharmadhikari, A.V., Varland, S., Ma, N., Domingo, D., Kleyner, R., Rope, A.F., Yoon, M., Stray-Pedersen, A., Posey, J.E., Crews, S.R., Eldomery, M.K., Akdemir, Z.C., Lewis, A.M., Sutton, V.R., Rosenfeld, J.A., Conboy, E., Agre, K., Xia, F., Walkiewicz, M., Longoni, M., High, F.A., Slegtenhorst, M.A. van, Mancini, G.M.S., Finnila, C.R., Haeringen, A. van, Hollander, N. den, Ruivenkamp, C., Naidu, S., Mahida, S., Palmer, E.E., Murray, L., Lim, D., Jayakar, P., Parker, M.J., Giusto, S., Stracuzzi, E., Romano, C, Beighley, J.S., Bernier, R.A., Kury, S., Nizon, M., Corbett, M.A., Shaw, M., Gardner, A., Barnett, C., Armstrong, R., Kassahn, K.S., Dijck, A. Van, Vandeweyer, G., Kleefstra, T., Schieving, J.H., Jongmans, M.C., Vries, B.B.A. de, Pfundt, R.P., Kerr, B., Rojas, S.K., Boycott, K.M., Person, R., Willaert, R., Eichler, E.E., Kooy, R.F., Yang, Y., Wu, J.C., Lupski, J.R., Arnesen, T., Cooper, G.M., Chung, W.K., Gecz, J., Stessman, H.A.F., Meng, L., and Lyon, G.J.
- Abstract
Item does not contain fulltext, N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.
- Published
- 2018
22. Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies
- Author
-
Cheng, H, Dharmadhikari, AV, Varland, S, Ma, N, Domingo, D, Kleyner, R, Rope, AF, Yoon, M, Stray-Pedersen, A, Posey, JE, Crews, SR, Eldomery, MK, Akdemir, ZC, Lewis, AM, Sutton, VR, Rosenfeld, JA, Conboy, E, Agre, K, Xia, F, Walkiewicz, M, Longoni, M, High, FA, van Slegtenhorst, MA, Mancini, GMS, Finnila, CR, van Haeringen, A, den Hollander, N, Ruivenkamp, C, Naidu, S, Mahida, S, Palmer, EE, Murray, L, Lim, D, Jayakar, P, Parker, MJ, Giusto, S, Stracuzzi, E, Romano, C, Beighley, JS, Bernier, RA, Küry, S, Nizon, M, Corbett, MA, Shaw, M, Gardner, A, Barnett, C, Armstrong, R, Kassahn, KS, Van Dijck, A, Vandeweyer, G, Kleefstra, T, Schieving, J, Jongmans, MJ, de Vries, BBA, Pfundt, R, Kerr, B, Rojas, SK, Boycott, KM, Person, R, Willaert, R, Eichler, EE, Kooy, RF, Yang, Y, Wu, JC, Lupski, JR, Arnesen, T, Cooper, GM, Chung, WK, Gecz, J, Stessman, HAF, Meng, L, Lyon, GJ, Cheng, H, Dharmadhikari, AV, Varland, S, Ma, N, Domingo, D, Kleyner, R, Rope, AF, Yoon, M, Stray-Pedersen, A, Posey, JE, Crews, SR, Eldomery, MK, Akdemir, ZC, Lewis, AM, Sutton, VR, Rosenfeld, JA, Conboy, E, Agre, K, Xia, F, Walkiewicz, M, Longoni, M, High, FA, van Slegtenhorst, MA, Mancini, GMS, Finnila, CR, van Haeringen, A, den Hollander, N, Ruivenkamp, C, Naidu, S, Mahida, S, Palmer, EE, Murray, L, Lim, D, Jayakar, P, Parker, MJ, Giusto, S, Stracuzzi, E, Romano, C, Beighley, JS, Bernier, RA, Küry, S, Nizon, M, Corbett, MA, Shaw, M, Gardner, A, Barnett, C, Armstrong, R, Kassahn, KS, Van Dijck, A, Vandeweyer, G, Kleefstra, T, Schieving, J, Jongmans, MJ, de Vries, BBA, Pfundt, R, Kerr, B, Rojas, SK, Boycott, KM, Person, R, Willaert, R, Eichler, EE, Kooy, RF, Yang, Y, Wu, JC, Lupski, JR, Arnesen, T, Cooper, GM, Chung, WK, Gecz, J, Stessman, HAF, Meng, L, and Lyon, GJ
- Abstract
N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.
- Published
- 2018
23. Elucidating the genetic architecture of Adams-Oliver syndrome in a large European cohort
- Author
-
Meester, J.A.N., Sukalo, M., Schröder, K.C., Schanze, D., Baynam, G., Borck, G., Bramswig, N.C., Duman, D., Gilbert-Dussardier, B., Holder-Espinasse, M., Itin, P., Johnson, D.S., Joss, S., Koillinen, H., McKenzie, F., Morton, J., Nelle, H., Reardon, W., Roll, C., Salih, M.A., Savarirayan, R., Scurr, I., Splitt, M., Thompson, E., Titheradge, H., Travers, C.P., Van Maldergem, L., Whiteford, M., Wieczorek, D., Vandeweyer, G., Trembath, R., Van Laer, L., Loeys, B.L., Zenker, M., Southgate, L., Wuyts, W., Meester, J.A.N., Sukalo, M., Schröder, K.C., Schanze, D., Baynam, G., Borck, G., Bramswig, N.C., Duman, D., Gilbert-Dussardier, B., Holder-Espinasse, M., Itin, P., Johnson, D.S., Joss, S., Koillinen, H., McKenzie, F., Morton, J., Nelle, H., Reardon, W., Roll, C., Salih, M.A., Savarirayan, R., Scurr, I., Splitt, M., Thompson, E., Titheradge, H., Travers, C.P., Van Maldergem, L., Whiteford, M., Wieczorek, D., Vandeweyer, G., Trembath, R., Van Laer, L., Loeys, B.L., Zenker, M., Southgate, L., and Wuyts, W.
- Abstract
Adams–Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next‐generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype–phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.
- Published
- 2018
24. Elucidating the genetic architecture of Adams-Oliver syndrome in a large European cohort
- Author
-
Meester, JAN, Sukalo, M, Schroeder, KC, Schanze, D, Baynam, G, Borck, G, Bramswig, NC, Duman, D, Gilbert-Dussardier, B, Holder-Espinasse, M, Itin, P, Johnson, DS, Joss, S, Koillinen, H, McKenzie, F, Morton, J, Nelle, H, Reardon, W, Roll, C, Salih, MA, Savarirayan, R, Scurr, I, Splitt, M, Thompson, E, Titheradge, H, Travers, CP, Van Maldergem, L, Whiteford, M, Wieczorek, D, Vandeweyer, G, Trembath, R, Van Laer, L, Loeys, BL, Zenker, M, Southgate, L, Wuyts, W, Meester, JAN, Sukalo, M, Schroeder, KC, Schanze, D, Baynam, G, Borck, G, Bramswig, NC, Duman, D, Gilbert-Dussardier, B, Holder-Espinasse, M, Itin, P, Johnson, DS, Joss, S, Koillinen, H, McKenzie, F, Morton, J, Nelle, H, Reardon, W, Roll, C, Salih, MA, Savarirayan, R, Scurr, I, Splitt, M, Thompson, E, Titheradge, H, Travers, CP, Van Maldergem, L, Whiteford, M, Wieczorek, D, Vandeweyer, G, Trembath, R, Van Laer, L, Loeys, BL, Zenker, M, Southgate, L, and Wuyts, W
- Abstract
Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype-phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.
- Published
- 2018
25. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3
- Author
-
Schepers, D, Tortora, G, Morisaki, H, MacCarrick, G, Lindsay, M, Liang, D, Mehta, SG, Hague, J, Verhagen, Judith, De Graaf - van de Laar, Ingrid, Wessels, Marja, Detisch, Y, van Haelst, M, Baas, A, Lichtenbelt, K, Braun, K, Linde, Denise, Roos - Hesselink, Jolien, McGillivray, G, Meester, J, Maystadt, I, Coucke, P, El-Khoury, E, Parkash, S, Diness, B, Risom, L, Scurr, I, Hilhorst-Hofstee, Y, Morisaki, T, Richer, J, Desir, J, Kempers, M, Rideout, AL, Horne, G, Bennett, C, Rahikkala, E, Vandeweyer, G, Alaerts, M, Verstraeten, A (Aline), Dietz, H, Van Laer, L, Loeys, B, Schepers, D, Tortora, G, Morisaki, H, MacCarrick, G, Lindsay, M, Liang, D, Mehta, SG, Hague, J, Verhagen, Judith, De Graaf - van de Laar, Ingrid, Wessels, Marja, Detisch, Y, van Haelst, M, Baas, A, Lichtenbelt, K, Braun, K, Linde, Denise, Roos - Hesselink, Jolien, McGillivray, G, Meester, J, Maystadt, I, Coucke, P, El-Khoury, E, Parkash, S, Diness, B, Risom, L, Scurr, I, Hilhorst-Hofstee, Y, Morisaki, T, Richer, J, Desir, J, Kempers, M, Rideout, AL, Horne, G, Bennett, C, Rahikkala, E, Vandeweyer, G, Alaerts, M, Verstraeten, A (Aline), Dietz, H, Van Laer, L, and Loeys, B
- Published
- 2018
26. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism
- Author
-
Vandeweyer, G., Helsmoortel, C., Dijck, A. Van, Silfhout, A.T. van, Coe, B.P., Bernier, R., Gerdts, J., Rooms, L., Ende, J. van den, Bakshi, M., Wilson, M., Nordgren, A., Hendon, L.G., Abdulrahman, O.A., Romano, C, Vries, B. de, Kleefstra, T., Eichler, E.E., Aa, N. van der, and Kooy, R.F.
- Subjects
Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,Neurodevelopmental disorders Radboud Institute for Molecular Life Sciences [Radboudumc 7] - Abstract
Contains fulltext : 137084.pdf (Publisher’s version ) (Closed access)
- Published
- 2014
27. Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor
- Author
-
Gillis, E., Kumar, A.A., Luyckx, I., Preuss, C., Cannaerts, E., Beek, G. van de, Wieschendorf, B., Alaerts, M., Bolar, N., Vandeweyer, G., Meester, J. de, Wunnemann, F., Gould, R.A., Zhurayev, R., Zerbino, D., Mohamed, S.A., Mital, S., Mertens, L., Bjorck, H.M., Franco-Cereceda, A., McCallion, A.S., Laer, L. Van, Verhagen, J.M.A., Laar, I. van de, Wessels, M.W., Messas, E., Goudot, G., Nemcikova, M., Krebsova, A., Kempers, M.J.E., Salemink, S., Duijnhouwer, T., Jeunemaitre, X., Albuisson, J., Eriksson, P., Andelfinger, G., Dietz, H.C., Verstraeten, A., Loeys, B.L., Gillis, E., Kumar, A.A., Luyckx, I., Preuss, C., Cannaerts, E., Beek, G. van de, Wieschendorf, B., Alaerts, M., Bolar, N., Vandeweyer, G., Meester, J. de, Wunnemann, F., Gould, R.A., Zhurayev, R., Zerbino, D., Mohamed, S.A., Mital, S., Mertens, L., Bjorck, H.M., Franco-Cereceda, A., McCallion, A.S., Laer, L. Van, Verhagen, J.M.A., Laar, I. van de, Wessels, M.W., Messas, E., Goudot, G., Nemcikova, M., Krebsova, A., Kempers, M.J.E., Salemink, S., Duijnhouwer, T., Jeunemaitre, X., Albuisson, J., Eriksson, P., Andelfinger, G., Dietz, H.C., Verstraeten, A., and Loeys, B.L.
- Abstract
Contains fulltext : 176973.pdf (publisher's version ) (Open Access), Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter >/= 4.0 cm in adults, or a Z-score >/= 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype.
- Published
- 2017
28. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases
- Author
-
Stessman, H.A., Xiong, B., Coe, B.P., Wang, T., Hoekzema, K., Fenckova, M., Kvarnung, M., Gerdts, J., Trinh, S., Cosemans, N., Vives, L., Lin, J., Turner, T.N., Santen, G., Ruivenkamp, C., Kriek, M., Haeringen, A. van, Aten, E., Friend, K., Liebelt, J., Barnett, C., Haan, E., Shaw, M., Gecz, J., Anderlid, B.M., Nordgren, A., Lindstrand, A., Schwartz, C., Kooy, R.F., Vandeweyer, G., Helsmoortel, C., Romano, C, Alberti, A., Vinci, M., Avola, E., Giusto, S., Courchesne, E., Pramparo, T., Pierce, K., Nalabolu, S., Amaral, D.G., Scheffer, I.E., Delatycki, M.B., Lockhart, P.J., Hormozdiari, F., Harich, B., Castells Nobau, A., Xia, K., Peeters, H., Nordenskjold, M., Schenck, A., Bernier, R.A., Eichler, E.E., Stessman, H.A., Xiong, B., Coe, B.P., Wang, T., Hoekzema, K., Fenckova, M., Kvarnung, M., Gerdts, J., Trinh, S., Cosemans, N., Vives, L., Lin, J., Turner, T.N., Santen, G., Ruivenkamp, C., Kriek, M., Haeringen, A. van, Aten, E., Friend, K., Liebelt, J., Barnett, C., Haan, E., Shaw, M., Gecz, J., Anderlid, B.M., Nordgren, A., Lindstrand, A., Schwartz, C., Kooy, R.F., Vandeweyer, G., Helsmoortel, C., Romano, C, Alberti, A., Vinci, M., Avola, E., Giusto, S., Courchesne, E., Pramparo, T., Pierce, K., Nalabolu, S., Amaral, D.G., Scheffer, I.E., Delatycki, M.B., Lockhart, P.J., Hormozdiari, F., Harich, B., Castells Nobau, A., Xia, K., Peeters, H., Nordenskjold, M., Schenck, A., Bernier, R.A., and Eichler, E.E.
- Abstract
Item does not contain fulltext, Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.
- Published
- 2017
29. Mutations in two large pedigrees highlight the role of ZNF711 in X-linked intellectual disability
- Author
-
Werf, I.M. van der, Dijck, A. Van, Reyniers, E., Helsmoortel, C., Kumar, A.A., Kalscheuer, V.M., Brouwer, A.P.M. de, Kleefstra, T., Bokhoven, H. van, Mortier, G., Janssens, S., Vandeweyer, G., Kooy, R.F., Werf, I.M. van der, Dijck, A. Van, Reyniers, E., Helsmoortel, C., Kumar, A.A., Kalscheuer, V.M., Brouwer, A.P.M. de, Kleefstra, T., Bokhoven, H. van, Mortier, G., Janssens, S., Vandeweyer, G., and Kooy, R.F.
- Abstract
Item does not contain fulltext, Intellectual disability (ID) affects approximately 1-2% of the general population and is characterized by impaired cognitive abilities. ID is both clinically as well as genetically heterogeneous, up to 2000 genes are estimated to be involved in the emergence of the disease with various clinical presentations. For many genes, only a few patients have been reported and causality of some genes has been questioned upon the discovery of apparent loss-of-function mutations in healthy controls. Description of additional patients strengthens the evidence for the involvement of a gene in the disease and can clarify the clinical phenotype associated with mutations in a particular gene. Here, we present two large four-generation families with a total of 11 males affected with ID caused by mutations in ZNF711, thereby expanding the total number of families with ID and a ZNF711 mutation to four. Patients with mutations in ZNF711 all present with mild to moderate ID and poor speech accompanied by additional features in some patients, including autistic features and mild facial dysmorphisms, suggesting that ZNF711 mutations cause non-syndromic ID.
- Published
- 2017
30. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections
- Author
-
Meester, J.A., Vandeweyer, G., Pintelon, I., Lammens, M., Hoorick, L. Van, Belder, S. De, Waitzman, K., Young, L., Markham, L.W., Vogt, J., Richer, J., Beauchesne, L.M., Unger, S., Superti-Furga, A., Prsa, M., Dhillon, R., Reyniers, E., Dietz, H.C., Wuyts, W., Mortier, G., Verstraeten, A., Laer, L. Van, Loeys, B.L., Meester, J.A., Vandeweyer, G., Pintelon, I., Lammens, M., Hoorick, L. Van, Belder, S. De, Waitzman, K., Young, L., Markham, L.W., Vogt, J., Richer, J., Beauchesne, L.M., Unger, S., Superti-Furga, A., Prsa, M., Dhillon, R., Reyniers, E., Dietz, H.C., Wuyts, W., Mortier, G., Verstraeten, A., Laer, L. Van, and Loeys, B.L.
- Abstract
Contains fulltext : 175552.pdf (Publisher’s version ) (Open Access), PURPOSE: Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. METHODS: We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. RESULTS: We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-beta signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. CONCLUSION: In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-beta signaling.Genet Med 19 4, 386-395.
- Published
- 2017
31. Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma
- Author
-
Hylebos, M. (Marieke), Camp, G. (Guy) van, Vandeweyer, G. (Geert), Fransen, E. (Erik), Beyens, M. (Matthias), Cornelissen, R. (Robin), Suls, A. (A.), Pauwels, P. (Patrick), Meerbeeck, J.P. (Jan) van, de Beeck, K.O. (Ken Op), Hylebos, M. (Marieke), Camp, G. (Guy) van, Vandeweyer, G. (Geert), Fransen, E. (Erik), Beyens, M. (Matthias), Cornelissen, R. (Robin), Suls, A. (A.), Pauwels, P. (Patrick), Meerbeeck, J.P. (Jan) van, and de Beeck, K.O. (Ken Op)
- Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor that is often causally associated with asbestos exposure. Comparative genomic hybridization techniques and arrays demonstrated a complex set of copy number variations (CNVs) in the MPM-genome. These techniques however have a limited resolution, throughput and flexibility compared to next-generation sequencing platforms. In this study, the presence of CNVs in the MPM-genome was investigated using an MPM-cohort (N = 85) for which genomic microarray data are available through 'The Cancer Genome Atlas' (TCGA). To validate these results, the genomes of MPMs and matched normal samples (N = 21) were analyzed using low-pass whole genome sequencing on an 'Illumina HiSeq' platform. CNVs were detected using in-house developed analysis pipelines and frequencies of copy number loss and gain were calculated. In both datasets, losses on chromosomes 1, 3, 4, 6, 9, 13 and 22 and gains on chromosomes 1, 5, 7 and 17 were found in at least 25% and 15% of MPMs, respectively. Besides the well-known MPM-associated genes, CDKN2A, NF2 and BAP1, other interesting cancer-associated genes were listed as frequently involved in a copy number loss (e.g. EP300, SETD2 and PBRM1). Moreover, four cancer-associated genes showed a high frequency of copy number gain in b
- Published
- 2017
- Full Text
- View/download PDF
32. Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor
- Author
-
Gillis, E. (Elisabeth), Kumar, A.A. (Ajay A.), Luyckx, I. (Ilse), Preuss, C. (Christoph), Cannaerts, E. (Elyssa), Beek, G. (Gerarda van de), Wieschendorf, B. (Björn), Alaerts, M. (Maaike), Bolar, N. (Nikhita), Vandeweyer, G. (Geert), Meester, J. (Josephina), Wünnemann, F. (Florian), Gould, R.A. (Russell A.), Zhurayev, R. (Rustam), Zerbino, D. (Dmytro), Mohamed, S.A. (Salah A.), Mital, S. (Seema), Mertens, L. (Luc), Björck, H.M. (Hanna M.), Franco-Cereceda, A. (Anders), McCallion, A.S. (Andrew), Laer, L. (Lut) van, Verhagen, J.M.A. (Judith), Laar, I.M.B.H. (Ingrid) van de, Wessels, M.W. (Marja), Messas, E. (Emmanuel), Goudot, G. (Guillaume), Nemcikova, M. (Michaela), Krebsova, A. (Alice), Kempers, M.J.E. (Marlies), Salemink, S. (Simone), Duijnhouwer, T. (Toon), Jeunemaître, X. (Xavier), Albuisson, J. (Juliette), Eriksson, P. (Per), Andelfinger, G. (Gregor), Dietz, H.C. (Harry ), Verstraeten, A. (Aline), Loeys, B.L. (Bart), Gillis, E. (Elisabeth), Kumar, A.A. (Ajay A.), Luyckx, I. (Ilse), Preuss, C. (Christoph), Cannaerts, E. (Elyssa), Beek, G. (Gerarda van de), Wieschendorf, B. (Björn), Alaerts, M. (Maaike), Bolar, N. (Nikhita), Vandeweyer, G. (Geert), Meester, J. (Josephina), Wünnemann, F. (Florian), Gould, R.A. (Russell A.), Zhurayev, R. (Rustam), Zerbino, D. (Dmytro), Mohamed, S.A. (Salah A.), Mital, S. (Seema), Mertens, L. (Luc), Björck, H.M. (Hanna M.), Franco-Cereceda, A. (Anders), McCallion, A.S. (Andrew), Laer, L. (Lut) van, Verhagen, J.M.A. (Judith), Laar, I.M.B.H. (Ingrid) van de, Wessels, M.W. (Marja), Messas, E. (Emmanuel), Goudot, G. (Guillaume), Nemcikova, M. (Michaela), Krebsova, A. (Alice), Kempers, M.J.E. (Marlies), Salemink, S. (Simone), Duijnhouwer, T. (Toon), Jeunemaître, X. (Xavier), Albuisson, J. (Juliette), Eriksson, P. (Per), Andelfinger, G. (Gregor), Dietz, H.C. (Harry ), Verstraeten, A. (Aline), and Loeys, B.L. (Bart)
- Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter = 4.0 cm in adults, or a Z-score = 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype.
- Published
- 2017
- Full Text
- View/download PDF
33. Corrigendum: Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor [Front. Physiol, 8, (2017) (400)] doi: 10.3389/fphys.2017.00400
- Author
-
Gillis, E. (Elisabeth), Kumar, A.A. (Ajay A.), Luyckx, I. (Ilse), Preuss, C. (Christoph), Cannaerts, E. (Elyssa), Van De Beek, G. (Gerarda), Wieschendorf, B. (Björn), Alaerts, M. (Maaike), Bolar, N. (Nikhita), Vandeweyer, G. (Geert), Meester, J. (Josephina), Wünnemann, F. (Florian), Gould, R.A. (Russell A.), Zhurayev, R. (Rustam), Zerbino, D. (Dmytro), Mohamed, S.A. (Salah A.), Mital, S. (Seema), Mertens, L. (Luc), Björck, H.M. (Hanna M.), Franco-Cereceda, A. (Anders), McCallion, A.S. (Andrew), Van Laer, L. (Lut), Verhagen, J.M.A. (Judith), van de Laar, I.M.B.H. (Ingrid M.B.H.), Wessels, M.W. (Marja), Messas, E. (Emmanuel), Goudot, G. (Guillaume), Nemcikova, M. (Michaela), Krebsova, A. (Alice), Kempers, M.J.E. (Marlies), Salemink, S. (Simone), Duijnhouwer, T. (Toon), Jeunemaître, X. (Xavier), Albuisson, J. (Juliette), Eriksson, P. (Per), Andelfinger, G. (Gregor), Dietz, H.C. (Harry ), Verstraeten, A. (Aline), Loeys, B.L. (Bart), Gillis, E. (Elisabeth), Kumar, A.A. (Ajay A.), Luyckx, I. (Ilse), Preuss, C. (Christoph), Cannaerts, E. (Elyssa), Van De Beek, G. (Gerarda), Wieschendorf, B. (Björn), Alaerts, M. (Maaike), Bolar, N. (Nikhita), Vandeweyer, G. (Geert), Meester, J. (Josephina), Wünnemann, F. (Florian), Gould, R.A. (Russell A.), Zhurayev, R. (Rustam), Zerbino, D. (Dmytro), Mohamed, S.A. (Salah A.), Mital, S. (Seema), Mertens, L. (Luc), Björck, H.M. (Hanna M.), Franco-Cereceda, A. (Anders), McCallion, A.S. (Andrew), Van Laer, L. (Lut), Verhagen, J.M.A. (Judith), van de Laar, I.M.B.H. (Ingrid M.B.H.), Wessels, M.W. (Marja), Messas, E. (Emmanuel), Goudot, G. (Guillaume), Nemcikova, M. (Michaela), Krebsova, A. (Alice), Kempers, M.J.E. (Marlies), Salemink, S. (Simone), Duijnhouwer, T. (Toon), Jeunemaître, X. (Xavier), Albuisson, J. (Juliette), Eriksson, P. (Per), Andelfinger, G. (Gregor), Dietz, H.C. (Harry ), Verstraeten, A. (Aline), and Loeys, B.L. (Bart)
- Abstract
In the original article, we noted two mutation annotation errors. The correction of these two mistakes does not change the scientific conclusions in any way. The authors apologize for these nomenclature errors. Please find below the corrected annotations of those two mutations: (1) The correct RNA and protein annotations of the SMAD6 variant in P99 are c.455_461del and p.Pro152Profs*27, and not c.454_461del and p.Gly166Valfs*23. (2) The correct RNA and protein annotations of the SMAD6 variant in P128 are c.74_79del and p.Ser27_Gly28del, and not c.73_79del and p.Gly26_Ser27del. As a consequence, a correction has been made to RESULTS, Paragraphs 5 and 6: The SMAD6 c.726del variant leads to a frameshift (p.Lys242Asnfs*300) and a predicted protein with a C-terminal extension due to loss of the intended stop codon. The c.455_461del frameshift variant (p.Pro152Profs*27) causes the introduction of a premature stop codon, most likely resulting in haploinsufficiency due to nonsense-mediated mRNA decay (NMD). Also the two nonsense variants (p.Tyr279* and p.Tyr288*) are predicted to lead to NMD. All of the missense variants cluster in the functionally important MH1 and MH2 domains (Makkar et al., 2009) (amino acids 148-275 and 331-496, respectively), which is not the case for the sole missense variant (p.Ser130Leu) found in a control individual (Figure 2). All but one (p.Arg443His) of the identified variants were absent in the ExAC control cohort (v0.3.1; Supplementary Table 2). Moreover, the missense variants in the patient cohort (7/7) are enriched in the MH1 and MH2 domains when compared to ExAC controls (n = 228/430; p = 0.02).
- Published
- 2017
- Full Text
- View/download PDF
34. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases
- Author
-
Stessman, HAF, Xiong, B, Coe, BP, Wang, T, Hoekzema, K, Fenckova, M, Kvarnung, M, Gerdts, J, Trinh, S, Cosemans, N, Vives, L, Lin, J, Turner, TN, Santen, G, Ruivenkamp, C, Kriek, M, van Haeringen, A, Aten, E, Friend, K, Liebelt, J, Barnett, C, Haan, E, Shaw, M, Gecz, J, Anderlid, B-M, Nordgren, A, Lindstrand, A, Schwartz, C, Kooy, RF, Vandeweyer, G, Helsmoortel, C, Romano, C, Alberti, A, Vinci, M, Avola, E, Giusto, S, Courchesne, E, Pramparo, T, Pierce, K, Nalabolu, S, Amaral, DG, Scheffer, IE, Delatycki, MB, Lockhart, PJ, Hormozdiari, F, Harich, B, Castells-Nobau, A, Xia, K, Peeters, H, Nordenskjold, M, Schenck, A, Bernier, RA, Eichler, EE, Stessman, HAF, Xiong, B, Coe, BP, Wang, T, Hoekzema, K, Fenckova, M, Kvarnung, M, Gerdts, J, Trinh, S, Cosemans, N, Vives, L, Lin, J, Turner, TN, Santen, G, Ruivenkamp, C, Kriek, M, van Haeringen, A, Aten, E, Friend, K, Liebelt, J, Barnett, C, Haan, E, Shaw, M, Gecz, J, Anderlid, B-M, Nordgren, A, Lindstrand, A, Schwartz, C, Kooy, RF, Vandeweyer, G, Helsmoortel, C, Romano, C, Alberti, A, Vinci, M, Avola, E, Giusto, S, Courchesne, E, Pramparo, T, Pierce, K, Nalabolu, S, Amaral, DG, Scheffer, IE, Delatycki, MB, Lockhart, PJ, Hormozdiari, F, Harich, B, Castells-Nobau, A, Xia, K, Peeters, H, Nordenskjold, M, Schenck, A, Bernier, RA, and Eichler, EE
- Abstract
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.
- Published
- 2017
35. Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma
- Author
-
Hylebos, M, van Camp, G, Vandeweyer, G, Fransen, E, Beyens, M, Cornelissen, Robin, Suls, A, Pauwels, P, van Meerbeeck, JP, Op De Beeck, K, Hylebos, M, van Camp, G, Vandeweyer, G, Fransen, E, Beyens, M, Cornelissen, Robin, Suls, A, Pauwels, P, van Meerbeeck, JP, and Op De Beeck, K
- Published
- 2017
36. Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor
- Author
-
Gillis, E, Kumar, AA, Luyckx, I, Preuss, C, Cannaerts, E, van de Beek, G, Wieschendorf, B, Alaerts, M, Bolar, N, Vandeweyer, G, Meester, J, Wunnemann, F, Gould, RA, Zhurayev, R, Zerbino, D, Mohamed, SA, Mital, S, Mertens, L, Bjorck, HM, Franco-Cereceda, A, McCallion, AS, Van Laer, L, Verhagen, Judith, De Graaf - van de Laar, Ingrid, Wessels, Marja, Messas, E, Goudot, G, Nemcikova, M, Krebsova, A, Kempers, M, Salemink, S, Duijnhouwer, T, Jeunemaitre, X, Albuisson, J, Eriksson, P, Andelfinger, G, Dietz, HC, Verstraeten, A (Aline), Loeys, BL, Gillis, E, Kumar, AA, Luyckx, I, Preuss, C, Cannaerts, E, van de Beek, G, Wieschendorf, B, Alaerts, M, Bolar, N, Vandeweyer, G, Meester, J, Wunnemann, F, Gould, RA, Zhurayev, R, Zerbino, D, Mohamed, SA, Mital, S, Mertens, L, Bjorck, HM, Franco-Cereceda, A, McCallion, AS, Van Laer, L, Verhagen, Judith, De Graaf - van de Laar, Ingrid, Wessels, Marja, Messas, E, Goudot, G, Nemcikova, M, Krebsova, A, Kempers, M, Salemink, S, Duijnhouwer, T, Jeunemaitre, X, Albuisson, J, Eriksson, P, Andelfinger, G, Dietz, HC, Verstraeten, A (Aline), and Loeys, BL
- Published
- 2017
37. Behavioural characterization of AnkyrinG deficient mice, a model for ANK3 related disorders
- Author
-
van der Werf, I.M., primary, Van Dam, D., additional, Missault, S., additional, Yalcin, B., additional, De Deyn, P.P., additional, Vandeweyer, G., additional, and Kooy, R.F., additional
- Published
- 2017
- Full Text
- View/download PDF
38. Heimler syndrome is caused by hypomorphic mutations in the peroxisome-biogenesis genes PEX1 and PEX6
- Author
-
Ratbi, I, Falkenberg, KD, Sommen, M, Al-Sheqaih, N, Guaoua, S, Vandeweyer, G, Urquhart, JE, Chandler, KE, Williams, SJ, Roberts, NA, El Alloussi, M, Black, GC, Ferdinandusse, S, Ramdi, H, Heimler, A, Fryer, A, Lynch, S, Cooper, N, Ong, KR, Smith, CEL, Inglehearn, CF, Mighell, AJ, Elcock, C, Poulter, JA, Tischkowitz, M, Davies, SJ, Sefiani, A, Mironov, AA, Newman, WG, Waterham, HR, Van Camp, G, Graduate School, Laboratory for General Clinical Chemistry, AGEM - Amsterdam Gastroenterology Endocrinology Metabolism, and Laboratory Genetic Metabolic Diseases
- Subjects
Adult ,Male ,Adolescent ,Amelogenesis Imperfecta ,Hearing Loss, Sensorineural ,Nails, Malformed ,Article ,Young Adult ,Genetics ,Peroxisomes ,Humans ,Genetics(clinical) ,Child ,Cells, Cultured ,Adenosine Triphosphatases ,Infant, Newborn ,Infant ,Membrane Proteins ,Fibroblasts ,Prognosis ,Pedigree ,Survival Rate ,Phenotype ,Case-Control Studies ,Child, Preschool ,Mutation ,ATPases Associated with Diverse Cellular Activities ,Female ,Human medicine ,Follow-Up Studies - Abstract
Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities and occasional or late onset retinal pigmentation. We ascertained eight families with HS, and - using a whole exome sequencing approach - identified biallelic mutations in PEX1 or PEX6 in six of them. Loss of function mutations in both genes are known causes of a spectrum of autosomal recessive peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the overlap is minimal and the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define Heimler syndrome as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6.
- Published
- 2015
39. Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature
- Author
-
Chehadeh, S. El, Kerstjens-Frederikse, W.S., Thevenon, J., Kuentz, P., Bruel, A.L., Thauvin-Robinet, C., Bensignor, C., Dollfus, H., Laugel, V., Riviere, J.B., Duffourd, Y., Bonnet, C., Robert, M.P., Isaiko, R., Straub, M., Creuzot-Garcher, C., Calvas, P., Chassaing, N., Loeys, B., Reyniers, E., Vandeweyer, G., Kooy, F., Hancarova, M., Havlovicova, M., Prchalova, D., Sedlacek, Z., Gilissen, C.F., Pfundt, R.P., Wassink-Ruiter, J.S., Faivre, L., Chehadeh, S. El, Kerstjens-Frederikse, W.S., Thevenon, J., Kuentz, P., Bruel, A.L., Thauvin-Robinet, C., Bensignor, C., Dollfus, H., Laugel, V., Riviere, J.B., Duffourd, Y., Bonnet, C., Robert, M.P., Isaiko, R., Straub, M., Creuzot-Garcher, C., Calvas, P., Chassaing, N., Loeys, B., Reyniers, E., Vandeweyer, G., Kooy, F., Hancarova, M., Havlovicova, M., Prchalova, D., Sedlacek, Z., Gilissen, C.F., Pfundt, R.P., Wassink-Ruiter, J.S., and Faivre, L.
- Abstract
Item does not contain fulltext, Verheij syndrome, also called 8q24.3 microdeletion syndrome, is a rare condition characterized by ante- and postnatal growth retardation, microcephaly, vertebral anomalies, joint laxity/dislocation, developmental delay (DD), cardiac and renal defects and dysmorphic features. Recently, PUF60 (Poly-U Binding Splicing Factor 60 kDa), which encodes a component of the spliceosome, has been discussed as the best candidate gene for the Verheij syndrome phenotype, regarding the cardiac and short stature phenotype. To date, only one patient has been reported with a de novo variant in PUF60 that probably affects function (c.505C>T leading to p.(His169Tyr)) associated with DD, microcephaly, craniofacial and cardiac defects. Additional patients were required to confirm the pathogenesis of this association and further delineate the clinical spectrum. Here we report five patients with de novo heterozygous variants in PUF60 identified using whole exome sequencing. Variants included a splice-site variant (c.24+1G>C), a frameshift variant (p.(Ile136Thrfs*31)), two nonsense variants (p.(Arg448*) and p.(Lys301*)) and a missense change (p.(Val483Ala)). All six patients with a PUF60 variant (the five patients of the present study and the unique reported patient) have the same core facial gestalt as 8q24.3 microdeletions patients, associated with DD. Other findings include feeding difficulties (3/6), cardiac defects (5/6), short stature (5/6), joint laxity and/or dislocation (5/6), vertebral anomalies (3/6), bilateral microphthalmia and irido-retinal coloboma (1/6), bilateral optic nerve hypoplasia (2/6), renal anomalies (2/6) and branchial arch defects (2/6). These results confirm that PUF60 is a major driver for the developmental, craniofacial, skeletal and cardiac phenotypes associated with the 8q24.3 microdeletion.
- Published
- 2016
40. Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia
- Author
-
Bolar, N.A., Golzio, C., Zivna, M., Hayot, G., Hemelrijk, C. van, Schepers, D., Vandeweyer, G., Hoischen, A., Huyghe, J.R., Raes, A., Matthys, E., Sys, E., Azou, M., Gubler, M.C., Praet, M., Van Camp, G., McFadden, K., Pediaditakis, I., Pristoupilova, A., Hodanova, K., Vyletal, P., Hartmannova, H., Stranecky, V., Hulkova, H., Baresova, V., Jedlickova, I., Sovova, J., Hnizda, A., Kidd, K., Bleyer, A.J., Spong, R.S., Vande Walle, J., Mortier, G., Brunner, H.G., Van Laer, L., Kmoch, S., Katsanis, N., Loeys, B.L., Bolar, N.A., Golzio, C., Zivna, M., Hayot, G., Hemelrijk, C. van, Schepers, D., Vandeweyer, G., Hoischen, A., Huyghe, J.R., Raes, A., Matthys, E., Sys, E., Azou, M., Gubler, M.C., Praet, M., Van Camp, G., McFadden, K., Pediaditakis, I., Pristoupilova, A., Hodanova, K., Vyletal, P., Hartmannova, H., Stranecky, V., Hulkova, H., Baresova, V., Jedlickova, I., Sovova, J., Hnizda, A., Kidd, K., Bleyer, A.J., Spong, R.S., Vande Walle, J., Mortier, G., Brunner, H.G., Van Laer, L., Kmoch, S., Katsanis, N., and Loeys, B.L.
- Abstract
Contains fulltext : 167296.pdf (Publisher’s version ) (Open Access), Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.
- Published
- 2016
41. Performant Mutation Identification Using Targeted Next-Generation Sequencing of 14 Thoracic Aortic Aneurysm Genes
- Author
-
Proost, D., Vandeweyer, G., Meester, J.A., Salemink, S., Kempers, M., Ingram, C., Peeters, N., Saenen, J., Vrints, C., Lacro, R.V., Roden, D., Wuyts, W., Dietz, H.C., Mortier, G., Loeys, B.L., Laer, L. Van, Proost, D., Vandeweyer, G., Meester, J.A., Salemink, S., Kempers, M., Ingram, C., Peeters, N., Saenen, J., Vrints, C., Lacro, R.V., Roden, D., Wuyts, W., Dietz, H.C., Mortier, G., Loeys, B.L., and Laer, L. Van
- Abstract
Item does not contain fulltext, At least 14 causative genes have been identified for both syndromic and nonsyndromic forms of thoracic aortic aneurysm/dissection (TAA), an important cause of death in the industrialized world. Molecular confirmation of the diagnosis is increasingly important for gene-tailored patient management but consecutive, conventional molecular TAA gene screening is expensive and labor-intensive. To circumvent these problems, we developed a TAA gene panel for next-generation sequencing of 14 TAA genes. After validation, we applied the assay to 100 Marfan patients. We identified 90 FBN1 mutations, 44 of which were novel. In addition, Multiplex ligation-dependent probe amplification identified large deletions in six of the remaining samples, whereas false-negative results were excluded by Sanger sequencing of FBN1, TGFBR1, and TGFBR2 in the last four samples. Subsequently, we screened 55 syndromic and nonsyndromic TAA patients. We identified causal mutations in 15 patients (27%), one in each of the six following genes: ACTA2, COL3A1, TGFBR1, MYLK, SMAD3, SLC2A10 (homozygous), two in NOTCH1, and seven in FBN1. We conclude that our approach for TAA genetic testing overcomes the intrinsic hurdles of consecutive Sanger sequencing of all candidate genes and provides a powerful tool for the elaboration of clinical phenotypes assigned to different genes.
- Published
- 2015
42. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP
- Author
-
Helsmoortel, C., Silfhout, A.T. van, Coe, B.P., Vandeweyer, G., Rooms, L., Ende, J. van den, Schuurs-Hoeijmakers, J.H.M., Marcelis, C.L.M., Willemsen, M.H., Vissers, L.E.L.M., Yntema, H.G., Bakshi, M., Wilson, M., Witherspoon, K.T., Malmgren, H., Nordgren, A., Anneren, G., Fichera, M., Bosco, P., Romano, C, Vries, L.B.A. de, Kleefstra, T., Kooy, R.F., Eichler, E.E., Aa, N. van der, Helsmoortel, C., Silfhout, A.T. van, Coe, B.P., Vandeweyer, G., Rooms, L., Ende, J. van den, Schuurs-Hoeijmakers, J.H.M., Marcelis, C.L.M., Willemsen, M.H., Vissers, L.E.L.M., Yntema, H.G., Bakshi, M., Wilson, M., Witherspoon, K.T., Malmgren, H., Nordgren, A., Anneren, G., Fichera, M., Bosco, P., Romano, C, Vries, L.B.A. de, Kleefstra, T., Kooy, R.F., Eichler, E.E., and Aa, N. van der
- Abstract
Contains fulltext : 137247.pdf (publisher's version ) (Closed access), Despite the high heritability of autism spectrum disorders (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities, a genetic diagnosis can be established in only a minority of patients. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, as in Rett and fragile-X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next-generation sequencing, for the large majority of cases no molecular diagnosis can be established. Here, we report ten patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD-associated genes known to date.
- Published
- 2014
43. Challenges and opportunities in the investigation of unexplained intellectual disability using family‐based whole‐exome sequencing
- Author
-
Helsmoortel, C., primary, Vandeweyer, G., additional, Ordoukhanian, P., additional, Van Nieuwerburgh, F., additional, Van der Aa, N., additional, and Kooy, R.F., additional
- Published
- 2014
- Full Text
- View/download PDF
44. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders
- Author
-
Iqbal, Z., Vandeweyer, G., Voet, M. van der, Waryah, A.M., Zahoor, M.Y., Besseling, J.A., Roca, L.T., Silfhout, A.T. van, Nijhof, B., Kramer, J.M., Aa, N. van der, Ansar, M., Peeters, H., Helsmoortel, C., Gilissen, C.F.H.A., Vissers, L.E.L.M., Veltman, J.A., Brouwer, A.P.M. de, Kooy, R. van, Riazuddin, S., Schenck, A., Bokhoven, H. van, Rooms, L., Iqbal, Z., Vandeweyer, G., Voet, M. van der, Waryah, A.M., Zahoor, M.Y., Besseling, J.A., Roca, L.T., Silfhout, A.T. van, Nijhof, B., Kramer, J.M., Aa, N. van der, Ansar, M., Peeters, H., Helsmoortel, C., Gilissen, C.F.H.A., Vissers, L.E.L.M., Veltman, J.A., Brouwer, A.P.M. de, Kooy, R. van, Riazuddin, S., Schenck, A., Bokhoven, H. van, and Rooms, L.
- Abstract
Contains fulltext : 118541.pdf (publisher's version ) (Closed access), AnkyrinG, encoded by the ANK3 gene, is involved in neuronal development and signaling. It has previously been implicated in bipolar disorder and schizophrenia by association studies. Most recently, de novo missense mutations in this gene were identified in autistic patients. However, the causative nature of these mutations remained controversial. Here, we report inactivating mutations in the Ankyrin 3 (ANK3) gene in patients with severe cognitive deficits. In a patient with a borderline intelligence, severe attention deficit hyperactivity disorder (ADHD), autism and sleeping problems, all isoforms of the ANK3 gene, were disrupted by a balanced translocation. Furthermore, in a consanguineous family with moderate intellectual disability (ID), an ADHD-like phenotype and behavioral problems, we identified a homozygous truncating frameshift mutation in the longest isoform of the same gene, which represents the first reported familial mutation in the ANK3 gene. The causality of ANK3 mutations in the two families and the role of the gene in cognitive function were supported by memory defects in a Drosophila knockdown model. Thus we demonstrated that ANK3 plays a role in intellectual functioning. In addition, our findings support the suggested association of ANK3 with various neuropsychiatric disorders and illustrate the genetic and molecular relation between a wide range of neurodevelopmental disorders.
- Published
- 2013
45. A de novo balanced t(2;6)(p15;p22.3) in a patient with West Syndrome disrupts a lnc-RNA.
- Author
-
Vandeweyer, G., Aa, N. van der, Ceulemans, B., Bon, B.W.M. van, Rooms, L., Kooy, R.F., Vandeweyer, G., Aa, N. van der, Ceulemans, B., Bon, B.W.M. van, Rooms, L., and Kooy, R.F.
- Abstract
1 mei 2012, Contains fulltext : 110552.pdf (publisher's version ) (Closed access), In a male patient with West Syndrome we identified a perfectly balanced, de novo balanced translocation 46,XY,t(2;6)(p15;p22.3). No known protein coding genes were disrupted by the translocation and positional effects on nearby genes were excluded by expression studies. A putative long non-coding RNA, BX118339, spans the breakpoint on chromosome 6. It can be hypothesized that disruption of this non-coding transcript plays a role in the pathogenesis of the patient.
- Published
- 2012
46. Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes.
- Author
-
Bruno, D.L., Anderlid, B.M., Lindstrand, A., Ravenswaaij-Arts, C.M.A. van, Ganesamoorthy, D., Lundin, J., Martin, C.L., Douglas, J., Nowak, C., Adam, M.P., Kooy, R.F., Aa, N. van der, Reyniers, E., Vandeweyer, G., Stolte-Dijkstra, I., Dijkhuizen, T., Yeung, A., Delatycki, M., Borgstrom, B., Thelin, L., Cardoso, C., Bon, B.W.M. van, Pfundt, R., Vries, L.B.A. de, Wallin, A., Amor, D.J., James, P.A., Slater, H.R., Schoumans, J., Bruno, D.L., Anderlid, B.M., Lindstrand, A., Ravenswaaij-Arts, C.M.A. van, Ganesamoorthy, D., Lundin, J., Martin, C.L., Douglas, J., Nowak, C., Adam, M.P., Kooy, R.F., Aa, N. van der, Reyniers, E., Vandeweyer, G., Stolte-Dijkstra, I., Dijkhuizen, T., Yeung, A., Delatycki, M., Borgstrom, B., Thelin, L., Cardoso, C., Bon, B.W.M. van, Pfundt, R., Vries, L.B.A. de, Wallin, A., Amor, D.J., James, P.A., Slater, H.R., and Schoumans, J.
- Abstract
1 mei 2010, Contains fulltext : 88561.pdf (publisher's version ) (Closed access), BACKGROUND: Chromosome 17p13.3 contains extensive repetitive sequences and is a recognised region of genomic instability. Haploinsufficiency of PAFAH1B1 (encoding LIS1) causes either isolated lissencephaly sequence or Miller-Dieker syndrome, depending on the size of the deletion. More recently, both microdeletions and microduplications mapping to the Miller-Dieker syndrome telomeric critical region have been identified and associated with distinct but overlapping phenotypes. METHODS: Genome-wide microarray screening was performed on 7678 patients referred with unexplained learning difficulties and/or autism, with or without other congenital abnormalities. Eight and five unrelated individuals, respectively, were identified with microdeletions and microduplications in 17p13.3. RESULTS: Comparisons with six previously reported microdeletion cases identified a 258 kb critical region, encompassing six genes including CRK (encoding Crk) and YWHAE (encoding 14-3-3epsilon). Clinical features included growth retardation, facial dysmorphism and developmental delay. Notably, one individual with only subtle facial features and an interstitial deletion involving CRK but not YWHAE suggested that a genomic region spanning 109 kb, encompassing two genes (TUSC5 and YWHAE), is responsible for the main facial dysmorphism phenotype. Only the microduplication phenotype included autism. The microduplication minimal region of overlap for the new and previously reported cases spans 72 kb encompassing a single gene, YWHAE. These genomic rearrangements were not associated with low-copy repeats and are probably due to diverse molecular mechanisms. CONCLUSIONS: The authors further characterise the 17p13.3 microdeletion and microduplication phenotypic spectrum and describe a smaller critical genomic region allowing identification of candidate genes for the distinctive facial dysmorphism (microdeletions) and autism (microduplications) manifestations.
- Published
- 2010
47. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome.
- Author
-
Bon, B.W.M. van, Mefford, H.C., Menten, B., Koolen, D.A., Sharp, A.J., Nillesen, W.M., Innis, J.W., Ravel, T.J. de, Mercer, C.L., Fichera, M., Stewart, H., Connell, L.E., Ounap, K., Lachlan, K., Castle, B., Aa, N. van der, Ravenswaaij-Arts, C.M.A. van, Nobrega, M.A., Serra-Juhe, C., Simonic, I., Leeuw, N. de, Pfundt, R.P., Bongers, E.M.H.F., Baker, C., Finnemore, P., Huang, S., Maloney, V.K., Crolla, J.A., Kalmthout, M. van, Elia, M., Vandeweyer, G., Fryns, J.P., Janssens, S., Foulds, N., Reitano, S., Smith, K., Parkel, S., Loeys, B.L., Woods, C.G., Oostra, A., Speleman, F., Pereira, A.C., Kurg, A., Willatt, L., Knight, S.J., Vermeesch, J.R., Romano, C, Barber, J.C., Mortier, G., Perez-Jurado, L.A., Kooy, F., Brunner, H.G., Eichler, E.E., Kleefstra, T., Vries, L.B.A. de, Bon, B.W.M. van, Mefford, H.C., Menten, B., Koolen, D.A., Sharp, A.J., Nillesen, W.M., Innis, J.W., Ravel, T.J. de, Mercer, C.L., Fichera, M., Stewart, H., Connell, L.E., Ounap, K., Lachlan, K., Castle, B., Aa, N. van der, Ravenswaaij-Arts, C.M.A. van, Nobrega, M.A., Serra-Juhe, C., Simonic, I., Leeuw, N. de, Pfundt, R.P., Bongers, E.M.H.F., Baker, C., Finnemore, P., Huang, S., Maloney, V.K., Crolla, J.A., Kalmthout, M. van, Elia, M., Vandeweyer, G., Fryns, J.P., Janssens, S., Foulds, N., Reitano, S., Smith, K., Parkel, S., Loeys, B.L., Woods, C.G., Oostra, A., Speleman, F., Pereira, A.C., Kurg, A., Willatt, L., Knight, S.J., Vermeesch, J.R., Romano, C, Barber, J.C., Mortier, G., Perez-Jurado, L.A., Kooy, F., Brunner, H.G., Eichler, E.E., Kleefstra, T., and Vries, L.B.A. de
- Abstract
Contains fulltext : 80657.pdf (publisher's version ) (Closed access), BACKGROUND: Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. METHODS: To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. RESULTS: The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. CONCLUSIONS: Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnosti
- Published
- 2009
48. Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome.
- Author
-
Aa, N. van der, Rooms, L., Vandeweyer, G., Ende, J.J. van den, Reyniers, E., Fichera, M., Romano, C, Chiaie, B. Delle, Mortier, G., Menten, B., Destree, A., Maystadt, I., Mannik, K., Kurg, A., Reimand, T., McMullan, D., Oley, C., Brueton, L., Bongers, E.M.H.F., Bon, B.W.M. van, Pfundt, R.P., Jacquemont, S., Ferrarini, A., Martinet, D., Schrander-Stumpel, C.T.R.M., Stegmann, A.P., Frints, S.G., Vries, L.B.A. de, Ceulemans, B., Kooy, R.F., Aa, N. van der, Rooms, L., Vandeweyer, G., Ende, J.J. van den, Reyniers, E., Fichera, M., Romano, C, Chiaie, B. Delle, Mortier, G., Menten, B., Destree, A., Maystadt, I., Mannik, K., Kurg, A., Reimand, T., McMullan, D., Oley, C., Brueton, L., Bongers, E.M.H.F., Bon, B.W.M. van, Pfundt, R.P., Jacquemont, S., Ferrarini, A., Martinet, D., Schrander-Stumpel, C.T.R.M., Stegmann, A.P., Frints, S.G., Vries, L.B.A. de, Ceulemans, B., and Kooy, R.F.
- Abstract
Contains fulltext : 80644.pdf (publisher's version ) (Closed access), Interstitial deletions of 7q11.23 cause Williams-Beuren syndrome, one of the best characterized microdeletion syndromes. The clinical phenotype associated with the reciprocal duplication however is not well defined, though speech delay is often mentioned. We present 14 new 7q11.23 patients with the reciprocal duplication of the Williams-Beuren syndrome critical region, nine familial and five de novo. These were identified by either array-based MLPA or by array-CGH/oligonucleotide analysis in a series of patients with idiopathic mental retardation with an estimated population frequency of 1:13,000-1:20,000. Variable speech delay is a constant finding in our patient group, confirming previous reports. Cognitive abilities range from normal to moderate mental retardation. The association with autism is present in five patients and in one father who also carries the duplication. There is an increased incidence of hypotonia and congenital anomalies: heart defects (PDA), diaphragmatic hernia, cryptorchidism and non-specific brain abnormalities on MRI. Specific dysmorphic features were noted in our patients, including a short philtrum, thin lips and straight eyebrows. Our patient collection demonstrates that the 7q11.23 microduplication not only causes language delay, but is also associated with congenital anomalies and a recognizable face.
- Published
- 2009
49. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders
- Author
-
Iqbal, Z., primary, Vandeweyer, G., additional, van der Voet, M., additional, Waryah, A. M., additional, Zahoor, M. Y., additional, Besseling, J. A., additional, Roca, L. T., additional, Vulto-van Silfhout, A. T., additional, Nijhof, B., additional, Kramer, J. M., additional, Van der Aa, N., additional, Ansar, M., additional, Peeters, H., additional, Helsmoortel, C., additional, Gilissen, C., additional, Vissers, L. E. L. M., additional, Veltman, J. A., additional, de Brouwer, A. P. M., additional, Frank Kooy, R., additional, Riazuddin, S., additional, Schenck, A., additional, van Bokhoven, H., additional, and Rooms, L., additional
- Published
- 2013
- Full Text
- View/download PDF
50. Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes
- Author
-
Bruno, D. L., primary, Anderlid, B. M., additional, Lindstrand, A., additional, van Ravenswaaij-Arts, C., additional, Ganesamoorthy, D., additional, Lundin, J., additional, Martin, C. L., additional, Douglas, J., additional, Nowak, C., additional, Adam, M. P., additional, Kooy, R. F., additional, Van der Aa, N., additional, Reyniers, E., additional, Vandeweyer, G., additional, Stolte-Dijkstra, I., additional, Dijkhuizen, T., additional, Yeung, A., additional, Delatycki, M., additional, Borgstrom, B., additional, Thelin, L., additional, Cardoso, C., additional, van Bon, B., additional, Pfundt, R., additional, de Vries, B. B. A., additional, Wallin, A., additional, Amor, D. J., additional, James, P. A., additional, Slater, H. R., additional, and Schoumans, J., additional
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.