530 results on '"Vanderhaeghen, Pierre"'
Search Results
2. CTNND2 moderates the pace of synaptic maturation and links human evolution to synaptic neoteny
- Author
-
Assendorp, Nora, Fossati, Matteo, Libé-Philippot, Baptiste, Christopoulou, Eirini, Depp, Marine, Rapone, Roberta, Dingli, Florent, Loew, Damarys, Vanderhaeghen, Pierre, and Charrier, Cécile
- Published
- 2024
- Full Text
- View/download PDF
3. Metabolic mechanisms of species-specific developmental tempo
- Author
-
Iwata, Ryohei and Vanderhaeghen, Pierre
- Published
- 2024
- Full Text
- View/download PDF
4. Linking mitochondria metabolism, developmental timing, and human brain evolution
- Author
-
Casimir, Pierre, Iwata, Ryohei, and Vanderhaeghen, Pierre
- Published
- 2024
- Full Text
- View/download PDF
5. Repetitive CREB-DNA interactions at gene loci predetermined by CBP induce activity-dependent gene expression in human cortical neurons
- Author
-
Atsumi, Yuri, Iwata, Ryohei, Kimura, Hiroshi, Vanderhaeghen, Pierre, Yamamoto, Nobuhiko, and Sugo, Noriyuki
- Published
- 2024
- Full Text
- View/download PDF
6. Developmental mechanisms underlying the evolution of human cortical circuits
- Author
-
Vanderhaeghen, Pierre and Polleux, Franck
- Published
- 2023
- Full Text
- View/download PDF
7. YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress
- Author
-
De Franco, Elisa, Lytrivi, Maria, Ibrahim, Hazem, Montaser, Hossam, Wakeling, Matthew N., Fantuzzi, Federica, Patel, Kashyap, Demarez, Celine, Cai, Ying, Igoillo-Esteve, Mariana, Cosentino, Cristina, Lithovius, Vaino, Vihinen, Helena, Jokitalo, Eija, Laver, Thomas W., Johnson, Matthew B., Sawatani, Toshiaki, Shakeri, Hadis, Pachera, Nathalie, Haliloglu, Belma, Ozbek, Mehmet Nuri, Unal, Edip, Yildirim, Ruken, Godbole, Tushar, Yildiz, Melek, Aydin, Banu, Bilheu, Angeline, Suzuki, Ikuo, Flanagan, Sarah E., Vanderhaeghen, Pierre, Senee, Valerie, Julier, Cecile, Marchetti, Piero, Eizirik, Decio L., Ellard, Sian, Saarimaki-Vire, Jonna, Otonkoski, Timo, Cnop, Miriam, and Hattersley, Andrew T.
- Subjects
Pediatric research ,Diabetes mellitus -- Genetic aspects -- Causes of -- Development and progression ,Microcephaly -- Genetic aspects -- Causes of -- Development and progression ,Stress (Physiology) -- Genetic aspects -- Health aspects ,Neonatal diseases -- Genetic aspects -- Causes of -- Development and progression ,Endoplasmic reticulum -- Physiological aspects -- Health aspects ,Health care industry - Abstract
Neonatal diabetes is caused by single gene mutations reducing pancreatic [beta] cell number or impairing [beta] cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in [beta] cells. We identified 6 patients from 5 families with homozygous mutations in the YIPF5 gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human [beta] cell models (YIPF5 silencing in EndoC-[beta]H1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects [beta] cells. Loss of YIPF5 function in stem cell-derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and p cell failure. Partial YIPF5 silencing in EndoC-[beta]H1 cells and a patient mutation in stem cells increased the [beta] cell sensitivity to ER stress-induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in [beta] cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes., Introduction Neonatal diabetes mellitus develops before 6 months of age and is caused by reduced pancreatic [beta] cell number (reduced formation/increased destruction) or impaired [beta] cell function. Previous studies have [...]
- Published
- 2020
- Full Text
- View/download PDF
8. LRRC37B is a human modifier of voltage-gated sodium channels and axon excitability in cortical neurons
- Author
-
Libé-Philippot, Baptiste, primary, Lejeune, Amélie, additional, Wierda, Keimpe, additional, Louros, Nikolaos, additional, Erkol, Emir, additional, Vlaeminck, Ine, additional, Beckers, Sofie, additional, Gaspariunaite, Vaiva, additional, Bilheu, Angéline, additional, Konstantoulea, Katerina, additional, Nyitrai, Hajnalka, additional, De Vleeschouwer, Matthias, additional, Vennekens, Kristel M., additional, Vidal, Niels, additional, Bird, Thomas W., additional, Soto, Daniela C., additional, Jaspers, Tom, additional, Dewilde, Maarten, additional, Dennis, Megan Y., additional, Rousseau, Frederic, additional, Comoletti, Davide, additional, Schymkowitz, Joost, additional, Theys, Tom, additional, de Wit, Joris, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2023
- Full Text
- View/download PDF
9. Repetitive CREB-DNA interactions at gene loci predetermined by CBP induce activity-dependent gene expression in human cortical neurons
- Author
-
Atsumi, Yuri, primary, Iwata, Ryohei, additional, Kimura, Hiroshi, additional, Vanderhaeghen, Pierre, additional, Yamamoto, Nobuhiko, additional, and Sugo, Noriyuki, additional
- Published
- 2023
- Full Text
- View/download PDF
10. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders
- Author
-
Brennand, Kristen J, Marchetto, M Carol, Benvenisty, Nissim, Brüstle, Oliver, Ebert, Allison, Belmonte, Juan Carlos Izpisua, Kaykas, Ajamete, Lancaster, Madeline A, Livesey, Frederick J, McConnell, Michael J, McKay, Ronald D, Morrow, Eric M, Muotri, Alysson R, Panchision, David M, Rubin, Lee L, Sawa, Akira, Soldner, Frank, Song, Hongjun, Studer, Lorenz, Temple, Sally, Vaccarino, Flora M, Wu, Jun, Vanderhaeghen, Pierre, Gage, Fred H, and Jaenisch, Rudolf
- Subjects
Biochemistry and Cell Biology ,Biological Sciences ,Brain Disorders ,Bioengineering ,Neurosciences ,Clinical Research ,Stem Cell Research ,Neurological ,Brain ,Brain Diseases ,Drug Discovery ,Humans ,Induced Pluripotent Stem Cells ,Mosaicism ,Neurogenesis ,Precision Medicine ,Clinical Sciences ,Biochemistry and cell biology - Abstract
As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.
- Published
- 2015
11. SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo
- Author
-
Vermaercke, Ben, Iwata, Ryohei, Wierda, Keimpe, Boubakar, Leïla, Rodriguez, Paula, Ditkowska, Martyna, Bonin, Vincent, and Vanderhaeghen, Pierre
- Published
- 2024
- Full Text
- View/download PDF
12. The microcephaly geneASPMis required for the timely generation of human outer-radial glia progenitors by controlling mitotic spindle orientation
- Author
-
van Benthem, Anja, primary, Limame, Ridha, additional, Piumatti, Matteo, additional, Zaratin, Maurine, additional, Erkol, Emir, additional, Tanaka, Daisuke H., additional, Herpoel, Adèle, additional, Bilheu, Angéline, additional, van Benthem, Harmen, additional, Rodriguez, Laura Nebreda, additional, Pirson, Isabelle, additional, Keymolen, Kathelijn, additional, Poovathingal, Suresh, additional, Ditkowska, Martyna, additional, Désir, Julie, additional, Passemard, Sandrine, additional, Abramowicz, Marc, additional, Ledent, Catherine, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2023
- Full Text
- View/download PDF
13. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.
- Author
-
Lambert, Nelle, Lambot, Marie-Alexandra, Bilheu, Angéline, Albert, Valérie, Englert, Yvon, Libert, Frédérick, Noel, Jean-Christophe, Sotiriou, Christos, Holloway, Alisha K, Pollard, Katherine S, Detours, Vincent, and Vanderhaeghen, Pierre
- Subjects
Cerebral Cortex ,Humans ,In Situ Hybridization ,Gene Expression Profiling ,Reverse Transcriptase Polymerase Chain Reaction ,Gene Expression Regulation ,Developmental ,Regulatory Sequences ,Nucleic Acid ,Biological Evolution ,Gene Expression Regulation ,Developmental ,Regulatory Sequences ,Nucleic Acid ,General Science & Technology - Abstract
The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.
- Published
- 2011
14. Stress-induced unfolded protein response contributes to Zika virus–associated microcephaly
- Author
-
Gladwyn-Ng, Ivan, Cordón-Barris, Lluís, Alfano, Christian, Creppe, Catherine, Couderc, Thérèse, Morelli, Giovanni, Thelen, Nicolas, America, Michelle, Bessières, Bettina, Encha-Razavi, Férechté, Bonnière, Maryse, Suzuki, Ikuo K., Flamand, Marie, Vanderhaeghen, Pierre, Thiry, Marc, Lecuit, Marc, and Nguyen, Laurent
- Published
- 2018
- Full Text
- View/download PDF
15. Human synaptic neoteny requires species-specific balancing of SRGAP2-SYNGAP1 cross-inhibition
- Author
-
Libé-Philippot, Baptiste, primary, Iwata, Ryohei, additional, Recupero, Aleksandra J, additional, Wierda, Keimpe, additional, Ditkowska, Martyna, additional, Gaspariunaite, Vaiva, additional, Vermaercke, Ben, additional, Peze-Heidsieck, Eugénie, additional, Remans, Daan, additional, Charrier, Cécile, additional, Polleux, Franck, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2023
- Full Text
- View/download PDF
16. Subcellular mRNA localization and local translation of Arhgap11a in radial glial progenitors regulates cortical development
- Author
-
Pilaz, Louis-Jan, primary, Liu, Jing, additional, Joshi, Kaumudi, additional, Tsunekawa, Yuji, additional, Musso, Camila M., additional, D’Arcy, Brooke R., additional, Suzuki, Ikuo K., additional, Alsina, Fernando C., additional, KC, Pratiksha, additional, Sethi, Sahil, additional, Vanderhaeghen, Pierre, additional, Polleux, Franck, additional, and Silver, Debra L., additional
- Published
- 2023
- Full Text
- View/download PDF
17. Mitochondria metabolism sets the species-specific tempo of neuronal development.
- Author
-
Iwata, Ryohei, Casimir, Pierre, Erkol, Emir, Boubakar, Leïla, Planque, Mélanie, Gallego López, Isabel IM, Ditkowska, Martyna, Gaspariunaite, Vaiva, Beckers, Sofie, Remans, Daan, Vints, Katlijn, Vandekeere, Anke, Poovathingal, Suresh, Bird, Matthew MJ, Vlaeminck, Ine, Creemers, Eline, Wierda, Keimpe, Corthout, Nikky, Vermeersch, Pieter, Carpentier, Sébastien, Davie, Kristofer, Mazzone, Massimiliano, Gounko, Natalia NV, Aerts, Stein, Ghesquière, Bart, Fendt, Sarah-Maria, Vanderhaeghen, Pierre, Iwata, Ryohei, Casimir, Pierre, Erkol, Emir, Boubakar, Leïla, Planque, Mélanie, Gallego López, Isabel IM, Ditkowska, Martyna, Gaspariunaite, Vaiva, Beckers, Sofie, Remans, Daan, Vints, Katlijn, Vandekeere, Anke, Poovathingal, Suresh, Bird, Matthew MJ, Vlaeminck, Ine, Creemers, Eline, Wierda, Keimpe, Corthout, Nikky, Vermeersch, Pieter, Carpentier, Sébastien, Davie, Kristofer, Mazzone, Massimiliano, Gounko, Natalia NV, Aerts, Stein, Ghesquière, Bart, Fendt, Sarah-Maria, and Vanderhaeghen, Pierre
- Abstract
Neuronal development in the human cerebral cortex is considerably prolonged compared with that of other mammals. We explored whether mitochondria influence the species-specific timing of cortical neuron maturation. By comparing human and mouse cortical neuronal maturation at high temporal and cell resolution, we found a slower mitochondria development in human cortical neurons compared with that in the mouse, together with lower mitochondria metabolic activity, particularly that of oxidative phosphorylation. Stimulation of mitochondria metabolism in human neurons resulted in accelerated development in vitro and in vivo, leading to maturation of cells weeks ahead of time, whereas its inhibition in mouse neurons led to decreased rates of maturation. Mitochondria are thus important regulators of the pace of neuronal development underlying human-specific brain neoteny., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2023
18. CROCCP2 acts as a human-specific modifier of cilia dynamics and mTOR signaling to promote expansion of cortical progenitors
- Author
-
Van Heurck, Roxane, Bonnefont, Jérôme, Wojno, Marta, Suzuki, Ikuo, Velez-Bravo, Fausto F.D., Erkol, Emir, Nguyen, Dan Truc, Herpoel, Adèle, Bilheu, Angeline, Beckers, Sofie, Ledent, Catherine, Vanderhaeghen, Pierre, Van Heurck, Roxane, Bonnefont, Jérôme, Wojno, Marta, Suzuki, Ikuo, Velez-Bravo, Fausto F.D., Erkol, Emir, Nguyen, Dan Truc, Herpoel, Adèle, Bilheu, Angeline, Beckers, Sofie, Ledent, Catherine, and Vanderhaeghen, Pierre
- Abstract
The primary cilium is a central signaling component during embryonic development. Here we focus on CROCCP2, a hominid-specific gene duplicate from ciliary rootlet coiled coil (CROCC), also known as rootletin, that encodes the major component of the ciliary rootlet. We find that CROCCP2 is highly expressed in the human fetal brain and not in other primate species. CROCCP2 gain of function in the mouse embryonic cortex and human cortical cells and organoids results in decreased ciliogenesis and increased cortical progenitor amplification, particularly basal progenitors. CROCCP2 decreases ciliary dynamics by inhibition of the IFT20 ciliary trafficking protein, which then impacts neurogenesis through increased mTOR signaling. Loss of function of CROCCP2 in human cortical cells and organoids leads to increased ciliogenesis, decreased mTOR signaling, and impaired basal progenitor amplification. These data identify CROCCP2 as a human-specific modifier of cortical neurogenesis that acts through modulation of ciliary dynamics and mTOR signaling., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2023
19. From Human Pluripotent Stem Cells to Cortical Circuits
- Author
-
Astick, Marc, primary and Vanderhaeghen, Pierre, additional
- Published
- 2018
- Full Text
- View/download PDF
20. Mitochondria metabolism sets the species-specific tempo of neuronal development
- Author
-
Iwata, Ryohei, primary, Casimir, Pierre, additional, Erkol, Emir, additional, Boubakar, Leïla, additional, Planque, Mélanie, additional, Gallego López, Isabel M., additional, Ditkowska, Martyna, additional, Gaspariunaite, Vaiva, additional, Beckers, Sofie, additional, Remans, Daan, additional, Vints, Katlijn, additional, Vandekeere, Anke, additional, Poovathingal, Suresh, additional, Bird, Matthew, additional, Corthout, Nikky, additional, Vermeersch, Pieter, additional, Carpentier, Sébastien, additional, Davie, Kristofer, additional, Mazzone, Massimiliano, additional, Gounko, Natalia V., additional, Aerts, Stein, additional, Ghesquière, Bart, additional, Fendt, Sarah-Maria, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2023
- Full Text
- View/download PDF
21. SYNGAP1 deficiency disrupts neoteny in human cortical neurons in vivo
- Author
-
Vermaercke, Ben, primary, Iwata, Ryohei, additional, Weirda, Keimpe, additional, Boubakar, Leïla, additional, Rodriguez, Paula, additional, Ditkowska, Martyna, additional, Bonin, Vincent, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2023
- Full Text
- View/download PDF
22. The Microcephaly Gene ASPM Is Required for the Timely Generation of Human Outer-Radial Glia Progenitors by Controlling Mitotic Spindle Orientation
- Author
-
van Benthem, Anja, primary, Limame, Ridha, additional, Piumatti, Matteo, additional, Zaratin, Maurine, additional, Erkol, Emir, additional, Tanaka, Daisuke, additional, Herpoel, Adele, additional, Bilheu, Angéline, additional, van Benthem, Harmen, additional, Nebreda, Laura, additional, Pirson, Isabelle, additional, Keymolen, Kathelijn, additional, Poovathingal, Suresh, additional, Ditkowska, Martyna, additional, Désir, Julie, additional, Passemard, Sandrine, additional, Abramowicz, Marc, additional, Ledent, Catherine, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2023
- Full Text
- View/download PDF
23. CROCCP2 acts as a human-specific modifier of cilia dynamics and mTOR signaling to promote expansion of cortical progenitors
- Author
-
Van Heurck, Roxane, primary, Bonnefont, Jérôme, additional, Wojno, Marta, additional, Suzuki, Ikuo K., additional, Velez-Bravo, Fausto D., additional, Erkol, Emir, additional, Nguyen, Dan Truc, additional, Herpoel, Adèle, additional, Bilheu, Angéline, additional, Beckers, Sofie, additional, Ledent, Catherine, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2023
- Full Text
- View/download PDF
24. LRRC37B is a species-specific regulator of voltage-gated channels and excitability in human cortical neurons
- Author
-
Libé-Philippot, Baptiste, primary, Lejeune, Amélie, additional, Wierda, Keimpe, additional, Vlaeminck, Ine, additional, Beckers, Sofie, additional, Gaspariunaite, Vaiva, additional, Bilheu, Angéline, additional, Nyitrai, Hajnalka, additional, Vennekens, Kristel M., additional, Bird, Thomas W., additional, Soto, Daniela, additional, Dennis, Megan Y, additional, Comoletti, Davide, additional, Theys, Tom, additional, de Wit, Joris, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2022
- Full Text
- View/download PDF
25. Studying human neural function in vivo at the cellular level: Chasing chimeras?
- Author
-
Vermaercke, Ben, primary, Bonin, Vincent, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2022
- Full Text
- View/download PDF
26. An induced pluripotent stem cell-based model to investigate proprioceptive neuronal pathology in Friedreich ataxia
- Author
-
Schiffmann, Serge N., Remmelink, Myriam, Gall, David, Migeotte, Isabelle, Vanderhaeghen, Pierre, Napierala, Jill, Wade-Martins, Richard, Dionisi, Chiara, Schiffmann, Serge N., Remmelink, Myriam, Gall, David, Migeotte, Isabelle, Vanderhaeghen, Pierre, Napierala, Jill, Wade-Martins, Richard, and Dionisi, Chiara
- Abstract
Friedreich Ataxia (FRDA) is an autosomal recessive multisystem disorder with prominent neurological manifestations, which include the early and severe loss of large primary proprioceptive neurons (PPNs) of the Dorsal Root Ganglia (DRGs) and, at a later stage, the degeneration of cerebellar and pyramidal systems. The disease is caused by the hyperexpansion of a GAA triplet repeat in the first intron of the FXN gene, encoding the mitochondrial protein frataxin (FXN), which is involved in iron-sulfur cluster biogenesis. The expanded GAA tract promotes chromatin condensation and disrupts FXN mRNA transcription, leading to reduced FXN levels, impaired mitochondrial function and altered iron metabolism. Despite notable progress in the identification of the underlying causes of FRDA, neither the details of these pathogenic processes nor the reason for the specific vulnerability of the proprioceptive system and a limited number of other cell types are yet fully understood. Human induced pluripotent stem cells (iPSCs) are used to generate models of human diseases that recapitulate the pathogenic process as it occurs in affected cell types. Studies conducted so far in FRDA have mainly utilized iPSC-derived cortical neurons and cardiomyocytes, which have shown to recapitulate essential aspects of FRDA pathogenesis that are at least partially corrected by restoring FXN expression. However, those studies can only provide a limited view of the effects that FXN silencing has in vivo, because the neuronal type utilized so far is not affected in FRDA patients. On the other side, efforts to differentiate iPSCs into primary sensory neurons have only succeeded in generating an unselected mixed neuronal population with a small minority of proprioceptors.Having an in vitro source of PPNs would enable the study of the alterations which are specifically induced and the pathways which are impaired by frataxin deficiency in these cells, helping in the understanding of their unique neuronal p, L'ataxie de Friedreich (FRDA) est une pathologie héréditaire autosomale récessive caractérisée par des manifestations neurologiques importantes, qui comprennent la perte précoce et sévère des neurones proprioceptifs (PPN) des ganglions de la racine dorsale (DRG) et, à un stade ultérieur, l’atteinte des systèmes cérébelleux et pyramidaux.La maladie est causée par une expansion de triplets nucléotidiques GAA au sein du premier intron du gène FXN, qui code pour la protéine mitochondriale frataxine (FXN), impliquée dans la biogenèse des centres fer-soufre (Fe-S). Cette expansion GAA induit la formation d’hétérochromatine et perturbe la transcription du gène FXN, entraînant une réduction des niveaux de frataxine, une altération de la fonction mitochondriale et une altération du métabolisme du fer. Malgré des progrès notables dans l'identification des causes de la maladie, ni les détails de ces processus pathogènes ni la raison de la vulnérabilité spécifique du système proprioceptif et d'un nombre limité d'autres types de cellules ne sont encore entièrement élucidés.Les cellules souches pluripotentes induites (iPSC) sont utilisées pour générer des modèles de maladies humaines qui récapitulent le processus pathogénique tel qu'il se manifeste dans les cellules affectées. Les études menées jusqu'à présent dans l’ataxie de Friedreich ont principalement utilisé des neurones corticaux et des cardiomyocytes dérivés des iPSC FRDA, qui présentent les aspects essentiels de la pathogenèse de FRDA, qui sont partiellement corrigés après la restauration de l’expression du gène FXN. Cependant, ces études ne peuvent fournir qu'une vision limitée des effets de la diminution de la transcription du gène FXN, car le type neuronal utilisé n'est pas affecté dans la maladie. D'autre part, les efforts pour différencier les iPSC en neurones sensoriels primaires n'ont réussi qu'à générer une population neuronale mixte avec une faible proportion de neurones de type proprioceptif. Disposer d'une sou, Doctorat en Sciences biomédicales et pharmaceutiques (Médecine), info:eu-repo/semantics/nonPublished
- Published
- 2022
27. Species-specific mitochondria dynamics and metabolism regulate the timing of neuronal development
- Author
-
Iwata, Ryohei, primary, Casimir, Pierre, additional, Erkol, Emir, additional, Boubakar, Leïla, additional, Planque, Mélanie, additional, Ditkowska, Martyna, additional, Vints, Katlijn, additional, Poovathingal, Suresh, additional, Gaspariunaite, Vaiva, additional, Bird, Matthew, additional, Corthout, Nikky, additional, Vermeersch, Pieter, additional, Davie, Kristofer, additional, Gounko, Natalia V., additional, Aerts, Stein, additional, Ghesquière, Bart, additional, Fendt, Sarah-Maria, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2021
- Full Text
- View/download PDF
28. Cellular and Molecular Mechanisms Linking Human Cortical Development and Evolution
- Author
-
Libé-Philippot, Baptiste, primary and Vanderhaeghen, Pierre, additional
- Published
- 2021
- Full Text
- View/download PDF
29. Olfactory Receptors Are Displayed on Dog Mature Sperm Cells
- Author
-
Vanderhaeghen, Pierre, Schurmans, Stéphane, Vassart, Gilbert, and Parmentier, Marc
- Published
- 1993
30. Regulatory roles of mitochondria and metabolism in neurogenesis
- Author
-
Iwata, Ryohei, primary and Vanderhaeghen, Pierre, additional
- Published
- 2021
- Full Text
- View/download PDF
31. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
- Author
-
Sønderby, Ida E., van der Meer, Dennis, Moreau, Clara, Kaufmann, Tobias, Walters, G Bragi, Ellegaard, Maria, Abdellaoui, Abdel, Ames, David, Amunts, Katrin, Andersson, Micael, Armstrong, Nicola J., Bernard, Manon, Blackburn, Nicholas B., Blangero, John, Boomsma, Dorret I., Brodaty, Henry, Brouwer, Rachel M., Bülow, Robin, Bøen, Rune, Cahn, Wiepke, Calhoun, Vince D., Caspers, Svenja, Ching, Christopher R K, Cichon, Sven, Ciufolini, Simone, Crespo-Facorro, Benedicto, Curran, Joanne E., Dale, Anders M., Dalvie, Shareefa, Dazzan, Paola, de Geus, Eco J C, de Zubicaray, Greig I., de Zwarte, Sonja M C, Desrivieres, Sylvane, Doherty, Joanne L., Donohoe, Gary, Draganski, Bogdan, Ehrlich, Stefan, Eising, Else, Espeseth, Thomas, Fejgin, Kim, Fisher, Simon E., Fladby, Tormod, Frei, Oleksandr, Frouin, Vincent, Fukunaga, Masaki, Gareau, Thomas, Ge, Tian, Glahn, David C., Grabe, Hans J., Groenewold, Nynke A., Gústafsson, Ómar, Haavik, Jan, Haberg, Asta K., Hall, Jeremy, Hashimoto, Ryota, Hehir-Kwa, Jayne Y., Hibar, Derrek P., Hillegers, Manon H J, Hoffmann, Per, Holleran, Laurena, Holmes, Avram J., Homuth, Georg, Hottenga, Jouke-Jan, Hulshoff Pol, Hilleke E., Ikeda, Masashi, Jahanshad, Neda, Jockwitz, Christiane, Johansson, Stefan, Jönsson, Erik G., Jørgensen, Niklas R., Kikuchi, Masataka, Knowles, Emma E M, Kumar, Kuldeep, Le Hellard, Stephanie, Leu, Costin, Linden, David E J, Liu, Jingyu, Lundervold, Arvid, Lundervold, Astri Johansen, Maillard, Anne M., Martin, Nicholas G., Martin-Brevet, Sandra, Mather, Karen A., Mathias, Samuel R., McMahon, Katie L., McRae, Allan F., Medland, Sarah E., Meyer-Lindenberg, Andreas, Moberget, Torgeir, Modenato, Claudia, Sánchez, Jennifer Monereo, Morris, Derek W., Mühleisen, Thomas W., Murray, Robin M., Nielsen, Jacob, Nordvik, Jan E., Nyberg, Lars, Loohuis, Loes M Olde, Ophoff, Roel A., Owen, Michael J., Paus, Tomas, Pausova, Zdenka, Peralta, Juan M., Pike, G Bruce, Prieto, Carlos, Quinlan, Erin B., Reinbold, Céline S, Marques, Tiago Reis, Rucker, James J H, Sachdev, Perminder S., Sando, Sigrid B., Schofield, Peter R., Schork, Andrew J., Schumann, Gunter, Shin, Jean, Shumskaya, Elena, Silva, Ana I., Sisodiya, Sanjay M., Steen, Vidar M., Stein, Dan J., Strike, Lachlan T., Suzuki, Ikuo K., Tamnes, Christian K., Teumer, Alexander, Thalamuthu, Anbupalam, Tordesillas-Gutiérrez, Diana, Uhlmann, Anne, Ulfarsson, Magnus O., van 't Ent, Dennis, van den Bree, Marianne B M, Vanderhaeghen, Pierre, Vassos, Evangelos, Wen, Wei, Wittfeld, Katharina, Wright, Margaret J., Agartz, Ingrid, Djurovic, Srdjan, Westlye, Lars T., Stefansson, Hreinn, Stefansson, Kari, Jacquemont, Sébastien, Thompson, Paul M., Andreassen, Ole A., Sønderby, Ida E., van der Meer, Dennis, Moreau, Clara, Kaufmann, Tobias, Walters, G Bragi, Ellegaard, Maria, Abdellaoui, Abdel, Ames, David, Amunts, Katrin, Andersson, Micael, Armstrong, Nicola J., Bernard, Manon, Blackburn, Nicholas B., Blangero, John, Boomsma, Dorret I., Brodaty, Henry, Brouwer, Rachel M., Bülow, Robin, Bøen, Rune, Cahn, Wiepke, Calhoun, Vince D., Caspers, Svenja, Ching, Christopher R K, Cichon, Sven, Ciufolini, Simone, Crespo-Facorro, Benedicto, Curran, Joanne E., Dale, Anders M., Dalvie, Shareefa, Dazzan, Paola, de Geus, Eco J C, de Zubicaray, Greig I., de Zwarte, Sonja M C, Desrivieres, Sylvane, Doherty, Joanne L., Donohoe, Gary, Draganski, Bogdan, Ehrlich, Stefan, Eising, Else, Espeseth, Thomas, Fejgin, Kim, Fisher, Simon E., Fladby, Tormod, Frei, Oleksandr, Frouin, Vincent, Fukunaga, Masaki, Gareau, Thomas, Ge, Tian, Glahn, David C., Grabe, Hans J., Groenewold, Nynke A., Gústafsson, Ómar, Haavik, Jan, Haberg, Asta K., Hall, Jeremy, Hashimoto, Ryota, Hehir-Kwa, Jayne Y., Hibar, Derrek P., Hillegers, Manon H J, Hoffmann, Per, Holleran, Laurena, Holmes, Avram J., Homuth, Georg, Hottenga, Jouke-Jan, Hulshoff Pol, Hilleke E., Ikeda, Masashi, Jahanshad, Neda, Jockwitz, Christiane, Johansson, Stefan, Jönsson, Erik G., Jørgensen, Niklas R., Kikuchi, Masataka, Knowles, Emma E M, Kumar, Kuldeep, Le Hellard, Stephanie, Leu, Costin, Linden, David E J, Liu, Jingyu, Lundervold, Arvid, Lundervold, Astri Johansen, Maillard, Anne M., Martin, Nicholas G., Martin-Brevet, Sandra, Mather, Karen A., Mathias, Samuel R., McMahon, Katie L., McRae, Allan F., Medland, Sarah E., Meyer-Lindenberg, Andreas, Moberget, Torgeir, Modenato, Claudia, Sánchez, Jennifer Monereo, Morris, Derek W., Mühleisen, Thomas W., Murray, Robin M., Nielsen, Jacob, Nordvik, Jan E., Nyberg, Lars, Loohuis, Loes M Olde, Ophoff, Roel A., Owen, Michael J., Paus, Tomas, Pausova, Zdenka, Peralta, Juan M., Pike, G Bruce, Prieto, Carlos, Quinlan, Erin B., Reinbold, Céline S, Marques, Tiago Reis, Rucker, James J H, Sachdev, Perminder S., Sando, Sigrid B., Schofield, Peter R., Schork, Andrew J., Schumann, Gunter, Shin, Jean, Shumskaya, Elena, Silva, Ana I., Sisodiya, Sanjay M., Steen, Vidar M., Stein, Dan J., Strike, Lachlan T., Suzuki, Ikuo K., Tamnes, Christian K., Teumer, Alexander, Thalamuthu, Anbupalam, Tordesillas-Gutiérrez, Diana, Uhlmann, Anne, Ulfarsson, Magnus O., van 't Ent, Dennis, van den Bree, Marianne B M, Vanderhaeghen, Pierre, Vassos, Evangelos, Wen, Wei, Wittfeld, Katharina, Wright, Margaret J., Agartz, Ingrid, Djurovic, Srdjan, Westlye, Lars T., Stefansson, Hreinn, Stefansson, Kari, Jacquemont, Sébastien, Thompson, Paul M., and Andreassen, Ole A.
- Abstract
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
- Published
- 2021
- Full Text
- View/download PDF
32. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
- Author
-
Helmholtz Association, European Commission, Netherlands Organization for Scientific Research, European Research Council, Knut and Alice Wallenberg Foundation, Innovative Medicines Initiative, European Federation of Pharmaceutical Industries and Associations, Science Foundation Ireland, Medical Research Council (UK), Wellcome Trust, Waterloo Foundation, National Institute of Mental Health (US), National Institutes of Health (US), Department of Health & Social Care (UK), NIHR Biomedical Research Centre (UK), NHS Foundation Trust, Harvard University, Massachusetts General Hospital, Swedish Research Council, Norwegian University of Science and Technology, Swedish Research Council for Sustainable Development, Kings College London, Federal Ministry of Education and Research (Germany), German Research Foundation, Agence Nationale de la Recherche (France), Fondation de France, Fondation pour la Recherche Médicale, Research Council of Norway, University of Bergen, European Science Foundation, National Health and Medical Research Council (Australia), Australian Research Council, Japan Agency for Medical Research and Development, Instituto de Salud Carlos III, Fundación Marques de Valdecilla, National Institute on Drug Abuse (US), Eunice Kennedy Shriver National Institute of Child Health and Human Development (US), University of Greifswald, Mecklenburg-Western Pomerania, University of Oslo, Sønderby, Ida E., van der Meer, Dennis, Moreau, Clara, Kaufmann, Tobias, Bragi Walters, G., Ellegaard, Maria, Abdellaoui, Abdel, Ames, David, Amunts, Katrin, Andersson, Micael, Armstrong, Nicola J., Modenato, Claudia, Monereo Sánchez, Jennifer, Morris, Derek W., Mühleisen, Thomas W., Pausova, Zdenka, Olde Loohuis, Loes M., Peralta, Juan M., Pike, G. Bruce, Prieto, Carlos, Quinlan, Erin B., Wright, Margaret J., Reinbold, Céline S., Stefansson, Hreinn, Reis Marques, Tiago, Bernard, Manon, Rucker, James J. H., Sachdev, Perminder S., Sando, Sigrid B., Schofield, Peter R., Schork, Andrew J., Schumann, Gunter, Agartz, Ingrid, Shin, Jean, Shumskaya, Elena, Stefansson, Kari, Silva, Ana I., Sisodiya, Sanjay M., Blackburn, Nicholas B., Steen, Vidar M., Stein, Dan J., Strike, Lachlan T., Suzuki, Ikuo K., Djurovic, Srdjan, Tamnes, Christian K., Teumer, Alexander, Thalamuthu, Anbupalam, Jacquemont, Sébastien, Tordesillas-Gutiérrez, Diana, Uhlmann, Anne, Ulfarsson, Magnus O., Blangero, John, van't Ent, Dennis, van den Bree, Marianne B. M., Westlye, Lars T., Vanderhaeghen, Pierre, Vassos, Evangelos, Wen, Wei, Wittfeld, Katharina, Thompson, Paul M., Boomsma, Dorret I., Andreassen, Ole A., Brodaty, Henry, Brouwer, Rachel M., Bülow, Robin, Bøen, Rune, Groenewold, Nynke A., Cahn, Wiepke, Hashimoto, Ryota, Calhoun, Vincent, Caspers, Svenja, Ching, Christopher R. K., Cichon, Sven, Ciufolini, Simone, Crespo-Facorro, Benedicto, Curran, Joanne E., Dale, Anders M., Gústafsson, Ómar, Dalvie, Shareefa, Dazzan, Paola, Hehir-Kwa, Jayne Y., de Geus, de Geus, Zubicaray, Greig I. de, de Zwarte, Sonja M. C., Desrivieres, Sylvane, Doherty, Joanne L., Donohoe, Gary, Draganski, Bogdan, Haavik, Jan, Ehrlich, Stefan, Eising, Else, Espeseth, Thomas, Hibar, Derrek P., Fejgin, Kim, Fisher, Simon E., Fladby, Tormod, Frei, Oleksandr, Frouin, Vincent, Fukunaga, Masaki, Haberg, Asta K., Gareau, Thomas, Ge,Tian, Glahn, David C., Grabe, Hans-Jörgen, Hillegers, Manon H. J., Hall, Jeremy, Hoffmann, Per, Holleran, Laurena, Holmes, Avram J., Homuth, Georg, Hottenga, Jouke-Jan, Murray, Robin M., Hulshoff Pol, Hilleke E., Ophoff, Roel A., Ikeda, Masashi, Jahanshad, Neda, Jockwitz, Christiane, Johansson, Stefan, Jönsson, Erik G., Jørgensen, Niklas R., Kikuchi, Masataka, Knowles, Emma E. M., Nielsen, Jacob, Kumar, Kuldeep, Le Hellard, Stephanie, Owen, Michael J., Leu, Costin, Linden, David E. J., Liu, Jingyu, Lundervold, Arvid, Lundervold, Astri Johansen, Maillard, Anne M., Martin, Nicholas G., Nordvik, Jan E., Martin-Brevet, Sandra, Mather, Karen A., Mathias, Samuel R., Paus, Tomas, McMahon, Katie L., McRae, Allan F., Medland, Sarah E., Meyer-Lindenberg, Andreas, Moberget, Torgeir, Nyberg, Lars, Helmholtz Association, European Commission, Netherlands Organization for Scientific Research, European Research Council, Knut and Alice Wallenberg Foundation, Innovative Medicines Initiative, European Federation of Pharmaceutical Industries and Associations, Science Foundation Ireland, Medical Research Council (UK), Wellcome Trust, Waterloo Foundation, National Institute of Mental Health (US), National Institutes of Health (US), Department of Health & Social Care (UK), NIHR Biomedical Research Centre (UK), NHS Foundation Trust, Harvard University, Massachusetts General Hospital, Swedish Research Council, Norwegian University of Science and Technology, Swedish Research Council for Sustainable Development, Kings College London, Federal Ministry of Education and Research (Germany), German Research Foundation, Agence Nationale de la Recherche (France), Fondation de France, Fondation pour la Recherche Médicale, Research Council of Norway, University of Bergen, European Science Foundation, National Health and Medical Research Council (Australia), Australian Research Council, Japan Agency for Medical Research and Development, Instituto de Salud Carlos III, Fundación Marques de Valdecilla, National Institute on Drug Abuse (US), Eunice Kennedy Shriver National Institute of Child Health and Human Development (US), University of Greifswald, Mecklenburg-Western Pomerania, University of Oslo, Sønderby, Ida E., van der Meer, Dennis, Moreau, Clara, Kaufmann, Tobias, Bragi Walters, G., Ellegaard, Maria, Abdellaoui, Abdel, Ames, David, Amunts, Katrin, Andersson, Micael, Armstrong, Nicola J., Modenato, Claudia, Monereo Sánchez, Jennifer, Morris, Derek W., Mühleisen, Thomas W., Pausova, Zdenka, Olde Loohuis, Loes M., Peralta, Juan M., Pike, G. Bruce, Prieto, Carlos, Quinlan, Erin B., Wright, Margaret J., Reinbold, Céline S., Stefansson, Hreinn, Reis Marques, Tiago, Bernard, Manon, Rucker, James J. H., Sachdev, Perminder S., Sando, Sigrid B., Schofield, Peter R., Schork, Andrew J., Schumann, Gunter, Agartz, Ingrid, Shin, Jean, Shumskaya, Elena, Stefansson, Kari, Silva, Ana I., Sisodiya, Sanjay M., Blackburn, Nicholas B., Steen, Vidar M., Stein, Dan J., Strike, Lachlan T., Suzuki, Ikuo K., Djurovic, Srdjan, Tamnes, Christian K., Teumer, Alexander, Thalamuthu, Anbupalam, Jacquemont, Sébastien, Tordesillas-Gutiérrez, Diana, Uhlmann, Anne, Ulfarsson, Magnus O., Blangero, John, van't Ent, Dennis, van den Bree, Marianne B. M., Westlye, Lars T., Vanderhaeghen, Pierre, Vassos, Evangelos, Wen, Wei, Wittfeld, Katharina, Thompson, Paul M., Boomsma, Dorret I., Andreassen, Ole A., Brodaty, Henry, Brouwer, Rachel M., Bülow, Robin, Bøen, Rune, Groenewold, Nynke A., Cahn, Wiepke, Hashimoto, Ryota, Calhoun, Vincent, Caspers, Svenja, Ching, Christopher R. K., Cichon, Sven, Ciufolini, Simone, Crespo-Facorro, Benedicto, Curran, Joanne E., Dale, Anders M., Gústafsson, Ómar, Dalvie, Shareefa, Dazzan, Paola, Hehir-Kwa, Jayne Y., de Geus, de Geus, Zubicaray, Greig I. de, de Zwarte, Sonja M. C., Desrivieres, Sylvane, Doherty, Joanne L., Donohoe, Gary, Draganski, Bogdan, Haavik, Jan, Ehrlich, Stefan, Eising, Else, Espeseth, Thomas, Hibar, Derrek P., Fejgin, Kim, Fisher, Simon E., Fladby, Tormod, Frei, Oleksandr, Frouin, Vincent, Fukunaga, Masaki, Haberg, Asta K., Gareau, Thomas, Ge,Tian, Glahn, David C., Grabe, Hans-Jörgen, Hillegers, Manon H. J., Hall, Jeremy, Hoffmann, Per, Holleran, Laurena, Holmes, Avram J., Homuth, Georg, Hottenga, Jouke-Jan, Murray, Robin M., Hulshoff Pol, Hilleke E., Ophoff, Roel A., Ikeda, Masashi, Jahanshad, Neda, Jockwitz, Christiane, Johansson, Stefan, Jönsson, Erik G., Jørgensen, Niklas R., Kikuchi, Masataka, Knowles, Emma E. M., Nielsen, Jacob, Kumar, Kuldeep, Le Hellard, Stephanie, Owen, Michael J., Leu, Costin, Linden, David E. J., Liu, Jingyu, Lundervold, Arvid, Lundervold, Astri Johansen, Maillard, Anne M., Martin, Nicholas G., Nordvik, Jan E., Martin-Brevet, Sandra, Mather, Karen A., Mathias, Samuel R., Paus, Tomas, McMahon, Katie L., McRae, Allan F., Medland, Sarah E., Meyer-Lindenberg, Andreas, Moberget, Torgeir, and Nyberg, Lars
- Abstract
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers—the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
- Published
- 2021
33. The interactome of the microcephaly gene ASPM in human cortical cells
- Author
-
Vanderhaeghen, Pierre, Casimir, Georges, Abramowicz, Marc, Vanhollebeke, Benoît, Erneux, Christophe, Passemard, Sandrine, Di Cunto, Ferdinando FC, Piumatti, Matteo, Vanderhaeghen, Pierre, Casimir, Georges, Abramowicz, Marc, Vanhollebeke, Benoît, Erneux, Christophe, Passemard, Sandrine, Di Cunto, Ferdinando FC, and Piumatti, Matteo
- Abstract
Mutations in the Abnormal Spindle-like Microcephaly-associated (ASPM) gene are the most common cause of primary microcephaly, a rare condition characterized by a severe reduction of brain size at birth. Several studies allowed to identify ASPM as a centrosome and mitotic spindle protein that regulates cell division and spindle orientation. However, little is known about ASPM molecular mechanisms, especially in human neural cells relevant to the disease. In order to decipher the molecular mechanisms of action of ASPM in human corticogenesis, we used co-immunoprecipitation (coIP) followed by mass spectrometry to identify the interactors of ASPM in human HEK cells and human cortical progenitors differentiated from pluripotent stem cells engineered to tag the endogenous ASPM protein. We thus identified and validated 14 ASPM interactors of which 12 are newly reported, and seven are found specifically in neural cells, including the important spindle pole regulator Nuclear mitotic apparatus (NUMA). We then characterized the expression and localization of the identified proteins in human cortical progenitors differentiated from control and isogenic ASPM mutant cells. This revealed that many of the identified proteins are selectively located at the spindle pole, and that this selective localization is disrupted in mutant cells for several of the interactors, in particular the MAP7 domain-containing protein 1 (MAP7D1) and DnaJ homolog subfamily B member 6 (DNAJB6). Our data uncover some of the complex ASPM interactome relevant and specific to human brain development and microcephaly, and suggest that ASPM acts as a major molecular hub at the centrosome and mitotic spindle to control the patterns of cell division of cortical progenitors., Doctorat en Sciences biomédicales et pharmaceutiques (Médecine), info:eu-repo/semantics/nonPublished
- Published
- 2021
34. Neuronal fate acquisition and specification: time for a change
- Author
-
Bonnefont, Jérôme, Vanderhaeghen, Pierre, Bonnefont, Jérôme, and Vanderhaeghen, Pierre
- Abstract
During embryonic development, neural stem/progenitor cells generate hundreds of different cell types through the combination of intrinsic and extrinsic cues. Recent data obtained in mouse and human cortical neurogenesis provide novel views about this interplay and how it evolves with time, whether during irreversible cell fate transitions that neural stem cells undergo to become neurons, or through gradual temporal changes of competence that lead to increased neuronal diversity from a common stem cell pool. In each case the temporal changes result from a dynamic balance between intracellular states and extracellular signalling factors. The underlying mechanisms are mostly conserved across species, but some display unique features in human corticogenesis, thereby linking temporal features of neurogenesis and human brain evolution., SCOPUS: re.j, info:eu-repo/semantics/published
- Published
- 2021
35. Regulatory roles of mitochondria and metabolism in neurogenesis
- Author
-
Iwata, Ryohei, Vanderhaeghen, Pierre, Iwata, Ryohei, and Vanderhaeghen, Pierre
- Abstract
Neural stem cells (NSCs) undergo massive molecular and cellular changes during neuronal differentiation. These include mitochondria and metabolism remodelling, which were thought to be mostly permissive cues, but recent work indicates that they are causally linked to neurogenesis. Striking remodelling of mitochondria occurs right after mitosis of NSCs, which influences the postmitotic daughter cells towards self-renewal or differentiation. The transitioning to neuronal fate requires metabolic rewiring including increased oxidative phosphorylation activity, which drives transcriptional and epigenetic effects to influence cell fate. Mitochondria metabolic pathways also contribute in an essential way to the regulation of NSC proliferation and self-renewal. The influence of mitochondria and metabolism on neurogenesis is conserved from fly to human systems, but also displays striking differences linked to cell context or species. These new findings have important implications for our understanding of neurodevelopmental diseases and possibly human brain evolution., SCOPUS: re.j, info:eu-repo/semantics/published
- Published
- 2021
36. Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin
- Author
-
van den Ameele, Jelle, Tiberi, Luca, Bondue, Antoine, Paulissen, Catherine, Herpoel, Adèle, Iacovino, Michelina, Kyba, Michael, Blanpain, Cédric, and Vanderhaeghen, Pierre
- Published
- 2012
- Full Text
- View/download PDF
37. An intrinsic mechanism of corticogenesis from embryonic stem cells
- Author
-
Gaspard, Nicolas, Bouschet, Tristan, Hourez, Raphael, Dimidschstein, Jordane, Naeije, Gilles, van den Ameele, Jelle, Espuny-Camacho, Ira, Herpoel, Adele, Passante, Lara, Schiffmann, Serge N., Gaillard, Afsaneh, and Vanderhaeghen, Pierre
- Subjects
Cerebral cortex -- Research -- Physiological aspects -- Usage ,Neurons -- Research -- Physiological aspects -- Usage ,Embryonic stem cells -- Research -- Physiological aspects -- Usage ,Animal models in research -- Usage -- Research -- Physiological aspects ,Environmental issues ,Science and technology ,Zoology and wildlife conservation ,Physiological aspects ,Usage ,Research - Abstract
The cerebral cortex develops through the coordinated generation of dozens of neuronal subtypes, but the mechanisms involved remain unclear. Here we show that mouse embryonic stem cells, cultured without any [...]
- Published
- 2008
38. YIPF5 mutations cause diabetes and microcephaly through disrupted endoplasmic reticulum-to-Golgi trafficking Category: Translational research
- Author
-
B Johnson Matthew, Lithovius Vaino, Ibrahim Hazem, Ellard Sian, Vanderhaeghen Pierre, Yildirim Ruken, Montaser Hossam, Cai Ying, Julier Cecile, L Eizirik Decio, Pachera Nathalie, Fantuzzi Federica, Vihinen Helena, Haliloglu Belma, Saarimaki-Vire Jonna, Sawatani Toshiaki, Demarez Celine, Senee Valerie, T. Hattersley Andrew, Otonkoski Timo, Shakeri Hadis, Nuri Ozbek Mehmet, E Flanagan Sarah, Yildiz Melek, Aydin Banu, Godbole Tushar, W Laver Thomas, Cnop Miriam, Unal Edip, Suzuki Ikuo, Marchetti Piero, De Franco Elisa, Lytrivi Maria, Igoillo-Esteve Mariana, Wakeling Matthew, Patel Kashyap, Jokitalo Eija, Bilheu Angeline, and Cosentino Cristina
- Subjects
Microcephaly ,symbols.namesake ,Endoplasmic reticulum ,Diabetes mellitus ,medicine ,symbols ,Translational research ,Biology ,Golgi apparatus ,medicine.disease ,Cell biology - Published
- 2020
39. Tempus fugit: How time flies during development
- Author
-
Iwata, Ryohei, Vanderhaeghen, Pierre, Iwata, Ryohei, and Vanderhaeghen, Pierre
- Abstract
SCOPUS: no.j, info:eu-repo/semantics/published
- Published
- 2020
40. Mitochondrial dynamics in postmitotic cells regulate neurogenesis
- Author
-
Iwata, Ryohei, Casimir, Pierre, Vanderhaeghen, Pierre, Iwata, Ryohei, Casimir, Pierre, and Vanderhaeghen, Pierre
- Abstract
The conversion of neural stem cells into neurons is associated with the remodeling of organelles, but whether and how this is causally linked to fate change is poorly understood. We examined and manipulated mitochondrial dynamics during mouse and human cortical neurogenesis. We reveal that shortly after cortical stem cells have divided, daughter cells destined to self-renew undergo mitochondrial fusion, whereas those that retain high levels of mitochondria fission become neurons. Increased mitochondria fission promotes neuronal fate, whereas induction of mitochondria fusion after mitosis redirects daughter cells toward self-renewal. This occurs during a restricted time window that is doubled in human cells, in line with their increased self-renewal capacity. Our data reveal a postmitotic period of fate plasticity in which mitochondrial dynamics are linked with cell fate., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2020
41. Neuronal fate acquisition and specification: time for a change
- Author
-
Bonnefont, Jérôme, primary and Vanderhaeghen, Pierre, additional
- Published
- 2021
- Full Text
- View/download PDF
42. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
- Author
-
Sønderby, Ida E., primary, van der Meer, Dennis, additional, Moreau, Clara, additional, Kaufmann, Tobias, additional, Walters, G. Bragi, additional, Ellegaard, Maria, additional, Abdellaoui, Abdel, additional, Ames, David, additional, Amunts, Katrin, additional, Andersson, Micael, additional, Armstrong, Nicola J, additional, Bernard, Manon, additional, Blackburn, Nicholas B, additional, Blangero, John, additional, Boomsma, Dorret, additional, Brodaty, Henry, additional, Brouwer, Rachel M., additional, Bülow, Robin, additional, Boen, Rune, additional, Cahn, Wiepke, additional, Calhoun, Vince D, additional, Caspers, Svenja, additional, Ching, Christopher RK, additional, Cichon, Sven, additional, Ciufolini, Simone, additional, Crespo-Facorro, Benedicto, additional, Curran, Joanne E, additional, Dale, Anders M, additional, Dalvie, Shareefa, additional, Dazzan, Paola, additional, de Geus, Eco, additional, de Zubicaray, Greig Ian, additional, de Zwarte, Sonja M. C., additional, Desrivieres, Sylvane, additional, Doherty, Joanne L, additional, Donohoe, Gary, additional, Draganski, Bogdan, additional, Ehrlich, Stefan, additional, Eising, Else, additional, Espeseth, Thomas, additional, Fejgin, Kim, additional, Fisher, Simon, additional, Fladby, Tormod, additional, Frei, Oleksandr, additional, Frouin, Vincent, additional, Fukunaga, Masaki, additional, Gareau, Thomas, additional, Ge, Tian, additional, Glahn, David C., additional, Grabe, Hans J., additional, Groenewold, Nynke A., additional, Gustafsson, Omar, additional, Haakvik, Jan, additional, Håberg, Asta, additional, Hall, Jeremy, additional, Hashimoto, Ryota, additional, Hehir-Kwa, Jayne Y, additional, Hibar, Derrek P., additional, Hillegers, Manon H.J., additional, Hoffmann, Per, additional, Holleran, Laurena, additional, Holmes, Avram J, additional, Homuth, Georg, additional, Hottenga, Jouke-Jan, additional, Pol, Hilleke E. Hulshoff, additional, Ikeda, Masashi, additional, Jahanshad, Neda, additional, Jockwitz, Christiane, additional, Johansson, Stefan, additional, Jönsson, Erik G., additional, Jørgensen, Niklas R, additional, Kikuchi, Masataka, additional, Knowles, Emma EM, additional, Kumar, Kuldeep, additional, Le Hellard, Stephanie, additional, Leu, Costin, additional, Linden, David, additional, Liu, Jingyu, additional, Lundervold, Arvid, additional, Lundervold, Astri J., additional, Maillard, Anne Manuela, additional, Martin, Nicholas G, additional, Martin-Brevet, Sandra, additional, Mather, Karen A, additional, Mathias, Samuel R., additional, McMahon, Katie Louise, additional, McRae, Allan F, additional, Medland, Sarah, additional, Meyer-Lindenberg, Andreas, additional, Moberget, Torgeir, additional, Modenato, Claudia, additional, Sanchez, Jennifer Monereo, additional, Morris, Derek, additional, Mühleisen, Thomas W, additional, Murray, Robin, additional, Nielsen, Jacob, additional, Nordvik, Jan E, additional, Nyberg, Lars, additional, Loohuis, Loes M Olde, additional, Ophoff, Roel A, additional, Owen, Michael J, additional, Paus, Tomáš, additional, Pausova, Zdenka, additional, Peralta, Juan M, additional, Pike, Bruce, additional, Prieto, Carlos, additional, Quinlan, Erin Burke, additional, Reinbold, Céline S, additional, Marques, Tiago Reis, additional, Rucker, James J, additional, Sachdev, Perminder S, additional, Sando, Sigrid S, additional, Schofield, Peter R, additional, Schork, Andrew J, additional, Schumann, Gunter, additional, Shin, Jean, additional, Shumskaya, Elena, additional, Silva, Ana I, additional, Sisodiya, Sanjay M., additional, Steen, Vidar M, additional, Stein, Dan J., additional, Strike, Lachlan, additional, Suzuki, Ikuo K, additional, Tamnes, Christian K., additional, Teumer, Alexander, additional, Thalamuthu, Anbupalam, additional, Tordesillas-Gutiérrez, Diana, additional, Uhlmann, Anne, additional, Ulfarsson, Magnus O, additional, van 't Ent, Dennis, additional, van den Bree, Marianne BM, additional, Vanderhaeghen, Pierre, additional, Vassos, Evangelos, additional, Wen, Wei, additional, Wittfeld, Katharina, additional, Wright, Margaret J., additional, Agartz, Ingrid, additional, Djurovic, Srdjan, additional, Westlye, Lars T., additional, Stefansson, Hreinn, additional, Stefánsson, Kári, additional, Jacquemont, Sebastien, additional, Thompson, Paul, additional, Andreassen, Ole A., additional, and Consortium, for the p. European, additional
- Published
- 2021
- Full Text
- View/download PDF
43. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors
- Author
-
Depaepe, Vanessa, Suarez-Gonzalez, Nathalie, Dufour, Audrey, Passante, Lara, Gorski, Jessica A., Jones, Kevin R., Ledent, Catherine, and Vanderhaeghen, Pierre
- Subjects
Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Author(s): Vanessa Depaepe [1]; Nathalie Suarez-Gonzalez [1]; Audrey Dufour [1]; Lara Passante [1]; Jessica A Gorski [2]; Kevin R. Jones [2]; Catherine Ledent [1]; Pierre Vanderhaeghen (corresponding author) [1] Mechanisms [...]
- Published
- 2005
- Full Text
- View/download PDF
44. Generation of cortical neurons from pluripotent stem cells
- Author
-
Vanderhaeghen, Pierre, primary
- Published
- 2012
- Full Text
- View/download PDF
45. Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between
- Author
-
Vanderhaeghen, Pierre and Polleux, Franck
- Subjects
Brain mapping -- Models ,Neurology ,Health ,Psychology and mental health - Abstract
Roger Sperry proposed 40 years ago that topographic neural connections are established through complementary expression of chemoaffinity labels in projecting neurons and their final targets, This led to the identification of ephrins as key molecular cues controlling the topography of retinotectal projections. Recent studies have revealed a surprising twist to this model, shedding light on the developmental mechanisms patterning the projections between the thalamus and the cortex: ephrins, unexpectedly expressed in an intermediate target, control the establishment of topography of axonal projections between these two structures. The same cues are re-used later to control the mapping of thalamocortical projections within a given cortical area, which strikingly illustrates how a limited set of genes can contribute to generate several levels of complexity of a neuronal network.
- Published
- 2004
46. Transcriptional Mechanisms of EphA7 Gene Expression in the Developing Cerebral Cortex
- Author
-
Pietri, Sandra, Dimidschstein, Jordane, Tiberi, Luca, Sotiropoulou, Panagiota A., Bilheu, Angéline, Goffinet, André, Achouri, Younes, Tissir, Fadel, Blanpain, Cédric, Jacquemin, Patrick, and Vanderhaeghen, Pierre
- Published
- 2012
- Full Text
- View/download PDF
47. From stem cells to neural networks: recent advances and perspectives for neurodevelopmental disorders
- Author
-
GASPARD, NICOLAS and VANDERHAEGHEN, PIERRE
- Published
- 2011
- Full Text
- View/download PDF
48. Tempus fugit: How time flies during development
- Author
-
Iwata, Ryohei, primary and Vanderhaeghen, Pierre, additional
- Published
- 2020
- Full Text
- View/download PDF
49. Mitochondrial dynamics in postmitotic cells regulate neurogenesis
- Author
-
Iwata, Ryohei, primary, Casimir, Pierre, additional, and Vanderhaeghen, Pierre, additional
- Published
- 2020
- Full Text
- View/download PDF
50. Faculty Opinions recommendation of Intracellular pH controls WNT downstream of glycolysis in amniote embryos.
- Author
-
Vanderhaeghen, Pierre, primary
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.