Van den Langenbergh, J., Bastiaansen-Jenniskens, Y. M., van Osch, G. J.V.M., Runhaar, J., Bierma-Zeinstra, S. M.A., Soballe, K., Laursen, J., Liljensoe, A., Kops, N., Mechlenburg, I., Clockaerts, S., Van den Langenbergh, J., Bastiaansen-Jenniskens, Y. M., van Osch, G. J.V.M., Runhaar, J., Bierma-Zeinstra, S. M.A., Soballe, K., Laursen, J., Liljensoe, A., Kops, N., Mechlenburg, I., and Clockaerts, S.
Objective: To investigate associations between obesity-linked systemic factors and gene expression indicative for the inflammatory and fibrotic processes in the infrapatellar fat pad (IFP), in a population of obese patients with end-stage knee osteoarthritis (KOA). Methods: We collected human IFPs from 48 patients with a mean body mass index (BMI) of 35.44 kg/m2 during total knee replacement procedures. These patients were part of a randomized controlled trial and met the criteria of having OA and a BMI of ≥30 kg/m2. Blood samples were collected to assess serum levels of glucose, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and leptin. Total body composition was measured using dual-energy X-ray absorptiometry. Gene expressions of IL6, TNFA, COL1A1, IL1B, ASMA, PLOD2 in the IFP were analyzed. Results: Univariate analysis resulted in a positive correlation between BMI and procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) expression (r2 = 0.13). In univariate analyses of obesity-linked systemic factors and PLOD2, significant correlations were found for lean mass (r2 = 0.20), fat mass (r2 = 0.20), serum cholesterol (r2 = 0.17), serum triglycerides (r2 = 0.19) and serum leptin (r2 = 0.10). A multiple linear regression model indicated fat mass to be a strong predictor of PLOD2 production in the IFP (r2 = 0.22, P = 0.003). Conclusion: Our study demonstrates the positive association between fat mass and PLOD2 expression in the IFP of obese end-stage knee OA patients. This may indicate that within this patient population the fibrotic process in the IFP is influenced by systemic adipose tissue, next to local inflammatory processes.