11 results on '"Valentina Buffagni"'
Search Results
2. Case report: Sacral agenesis in two boxer dogs: clinical presentation, diagnostic investigations, and outcome
- Author
-
Diletta Dell'Apa, Martina Fumeo, Antonella Volta, Marco Bernardini, Francesca Fidanzio, Valentina Buffagni, Matthias Christen, Vidhya Jagannathan, Tosso Leeb, and Ezio Bianchi
- Subjects
sacral agenesis ,sacro-caudal dysgenesis ,Currarino syndrome ,spina bifida ,congenital spine malformation ,caudal regression syndrome ,Veterinary medicine ,SF600-1100 - Abstract
Two boxer dogs from the same litter were presented at 3 months of age for urinary and fecal incontinence. Both dogs had an abnormal tail consisting of a small stump, an atonic anal sphincter, and absent perineal reflex and sensation. Neurological evaluation was indicative of a lesion of the cauda equina or sacral spinal cord. Radiology and CT scan of the spine displayed similar findings in the two dogs that were indicative of sacral agenesis. Indeed, they had 6 lumbar vertebrae followed by a lumbosacral transitional vertebra, lacking a complete spinous process, and a hypoplastic vertebra carrying 2 hypoplastic sacral transverse processes as the only remnant of the sacral bone. Caudal vertebrae were absent in one of the dogs. On MRI, one dog had a dural sac occupying the entire spinal canal and ending in a subfascial fat structure. In the other dog, the dural sac finished in an extracanalar, subfascial, well-defined cystic structure, communicating with the subarachnoid space, and consistent with a meningocele. Sacral agenesis—that is the partial or complete absence of the sacral bones—is a neural tube defect occasionally reported in humans with spina bifida occulta. Sacral agenesis has been described in human and veterinary medicine in association with conditions such as caudal regression syndrome, perosomus elumbis, and Currarino syndrome. These neural tube defects are caused by genetic and/or environmental factors. Despite thorough genetic investigation, no candidate variants in genes with known functional impact on bone development or sacral development could be found in the affected dogs. To the best of the authors' knowledge, this is the first report describing similar sacral agenesis in two related boxer dogs.
- Published
- 2023
- Full Text
- View/download PDF
3. Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. Under Salinity
- Author
-
Mirella Sorrentino, Klára Panzarová, Ioannis Spyroglou, Lukáš Spíchal, Valentina Buffagni, Paola Ganugi, Youssef Rouphael, Giuseppe Colla, Luigi Lucini, and Nuria De Diego
- Subjects
vegetal-based protein hydrolysates ,multivariate statistical analysis ,metabolomics ,secondary metabolism ,salt stress ,Lactuca sativa L. ,Plant culture ,SB1-1110 - Abstract
Plant phenomics is becoming a common tool employed to characterize the mode of action of biostimulants. A combination of this technique with other omics such as metabolomics can offer a deeper understanding of a biostimulant effect in planta. However, the most challenging part then is the data analysis and the interpretation of the omics datasets. In this work, we present an example of how different tools, based on multivariate statistical analysis, can help to simplify the omics data and extract the relevant information. We demonstrate this by studying the effect of protein hydrolysate (PH)-based biostimulants derived from different natural sources in lettuce and tomato plants grown in controlled conditions and under salinity. The biostimulants induced different phenotypic and metabolomic responses in both crops. In general, they improved growth and photosynthesis performance under control and salt stress conditions, with better performance in lettuce. To identify the most significant traits for each treatment, a random forest classifier was used. Using this approach, we found out that, in lettuce, biomass-related parameters were the most relevant traits to evaluate the biostimulant mode of action, with a better response mainly connected to plant hormone regulation. However, in tomatoes, the relevant traits were related to chlorophyll fluorescence parameters in combination with certain antistress metabolites that benefit the electron transport chain, such as 4-hydroxycoumarin and vitamin K1 (phylloquinone). Altogether, we show that to go further in the understanding of the use of biostimulants as plant growth promotors and/or stress alleviators, it is highly beneficial to integrate more advanced statistical tools to deal with the huge datasets obtained from the -omics to extract the relevant information.
- Published
- 2022
- Full Text
- View/download PDF
4. Nutraceutical Profiles of Two Hydroponically Grown Sweet Basil Cultivars as Affected by the Composition of the Nutrient Solution and the Inoculation With Azospirillum brasilense
- Author
-
Simun Kolega, Begona Miras-Moreno, Valentina Buffagni, Luigi Lucini, Fabio Valentinuzzi, Mauro Maver, Tanja Mimmo, Marco Trevisan, Youry Pii, and Stefano Cesco
- Subjects
basil (Ocimum basilicum L.) ,metabolomics ,ionomics ,Azospirillum brasilense Cd ,fertilization strategies ,hydroponics and soilless culture ,Plant culture ,SB1-1110 - Abstract
Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO42– or NO3–, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation.
- Published
- 2020
- Full Text
- View/download PDF
5. Shaping Durum Wheat for the Future: Gene Expression Analyses and Metabolites Profiling Support the Contribution of BCAT Genes to Drought Stress Response
- Author
-
Valentina Buffagni, Filippo Vurro, Michela Janni, Mariolina Gullì, Arturo A. Keller, and Nelson Marmiroli
- Subjects
branched-chain aminotransferase ,durum wheat ,drought stress ,gene expression ,target metabolomics ,Plant culture ,SB1-1110 - Abstract
Global climate change, its implications for agriculture, and the complex scenario presented by the scientific community are of worldwide concern. Drought is a major abiotic stress that can restrict plants growth and yields, thus the identification of genotypes with higher adaptability to drought stress represents one of the primary goals in breeding programs. During abiotic stress, metabolic adaptation is crucial for stress tolerance, and accumulation of specific amino acids and/or as secondary metabolites deriving from amino acid metabolism may correlate with the increased tolerance to adverse environmental conditions. This work, focused on the metabolism of branched chain-amino acids (BCAAs) in durum wheat and the role of branched-chain amino acid aminotransferases (BCATs) in stress response. The role of BCATs in plant response to drought was previously proposed for Arabidopsis, where the levels of BCAAs were altered at the transcriptional level under drought conditions, triggering the onset of defense response metabolism. However, in wheat the role of BCAAs as a trigger of the onset of the drought defense response has not been elucidated. A comparative genomic approach elucidated the composition of the BCAT gene family in durum wheat. Here we demonstrate a tissue and developmental stage specificity of BCATs regulation in the drought response. Moreover, a metabolites profiling was performed on two contrasting durum wheat cultivars Colosseo and Cappelli resulting in the detection of a specific pattern of metabolites accumulated among genotypes and, in particular, in an enhanced BCAAs accumulation in the tolerant cv Cappelli further supporting a role of BCAAs in the drought defense response. The results support the use of gene expression and target metabolomic in modern breeding to shape new cultivars more resilient to a changing climate.
- Published
- 2020
- Full Text
- View/download PDF
6. The Modulation of Auxin-Responsive Genes, Phytohormone Profile, and Metabolomic Signature in Leaves of Tomato Cuttings Is Specifically Modulated by Different Protein Hydrolysates
- Author
-
Valentina Buffagni, Angela Valentina Ceccarelli, Youry Pii, Begoña Miras-Moreno, Youssef Rouphael, Mariateresa Cardarelli, Giuseppe Colla, and Luigi Lucini
- Subjects
biostimulants ,protein hydrolysates ,plant signalling ,auxin bio-assay ,Aux/IAA transcription factors ,gene expression ,Agriculture - Abstract
Protein hydrolysates (PHs) are employed in agriculture to increase the sustainability of farming systems, with positive results on crop productivity and response against environmental stressors. Nevertheless, the molecular mechanism(s) triggered by their specific activity is not clearly understood. In this work, five PHs obtained by enzymatic hydrolysis of different vegetal protein sources were tested for their root-promoting activity on tomato cuttings. All the treatments improved both root length and number when compared to negative controls. Distinctive metabolomic signatures were highlighted in response to treatments, indicating the triggering of different molecular processes in leaf tissues of tomato cuttings. PHs differentially modulated the biosynthesis of plant stress-protectants, such as alkaloids and phenylpropanoids. Moreover, metabolites involved in phytohormone biosynthesis were significantly impacted. In this context, a clear modulation of several compounds related to auxin homeostasis was observed. In addition, the differential modulation of SlIAA2 and SlIAA9 genes, which are involved in the IAA signalling pathway, might further suggest the auxin-like activity elicited by the PHs tested. Here we provide evidence that PHs can impact plant molecular level, positively affecting root development, most likely by affecting the signalling cascades activated in leaf tissues. The biostimulant activity was sustained by PH-specific response at the molecular level, likely ascribable to their heterogeneous botanical origins. In fact, our findings did not point out a clear universal response to PHs, and specific effects are to be investigated.
- Published
- 2021
- Full Text
- View/download PDF
7. Foliar Application of Different Vegetal-Derived Protein Hydrolysates Distinctively Modulates Tomato Root Development and Metabolism
- Author
-
Angela Valentina Ceccarelli, Begoña Miras-Moreno, Valentina Buffagni, Biancamaria Senizza, Youry Pii, Mariateresa Cardarelli, Youssef Rouphael, Giuseppe Colla, and Luigi Lucini
- Subjects
biostimulants ,metabolomics ,hormone-like activity ,plant bioassay ,Solanum lycoperscum L. ,Botany ,QK1-989 - Abstract
Despite the scientific evidence supporting their biostimulant activity, the molecular mechanism(s) underlying the activity of protein hydrolysates (PHs) and the specificity among different products are still poorly explored. This work tested five different protein hydrolysates, produced from different plant sources using the same enzymatic approach, for their ability to promote rooting in tomato cuttings following quick dipping. Provided that all the different PHs increased root length (45–93%) and some of them increased root number (37–56%), untargeted metabolomics followed by multivariate statistics and pathway analysis were used to unravel the molecular processes at the basis of the biostimulant activity. Distinct metabolomic signatures could be found in roots following the PHs treatments. In general, PHs shaped the phytohormone profile, modulating the complex interaction between cytokinins and auxins, an interplay playing a pivotal role in root development, and triggered a down accumulation of brassinosteroids. Concerning secondary metabolism, PHs induced the accumulation of aliphatic glucosinolates, alkaloids, and phenylpropanoids, potentially eliciting crop resilience to stress conditions. Here, we confirm that PHs may have a hormone-like activity, and that their application can modulate plant growth, likely interfering with signaling processes. Noteworthy, the heterogenicity of the botanical origin supported the distinctive and peculiar metabolomic responses we observed across the products tested. While supporting their biostimulant activity, these findings suggest that a generalized crop response to PHs cannot be defined and that specific effects are rather to be investigated.
- Published
- 2021
- Full Text
- View/download PDF
8. Mucopolysaccharidosis VI in a European Shorthair cat: Neurological presentation, computed tomography findings and genetic investigation
- Author
-
Beatrice Bravaccini, Valentina Buffagni, Linda Negro, Giovanna Bertolini, Evelina Burbaite, and Marika Menchetti
- Subjects
General Veterinary - Abstract
The present case report describes the clinical signs of a 10-month-old, intact female, Domestic Shorthair cat presented with a history of chronic progressive difficulty to walk with the four limbs. The physical and neurological examinations revealed skeletal deformities, corneal opacity and a severe spastic non-ambulatory tetraparesis. Complete blood count and biochemistry profiles were unremarkable. Diffuse bone rarefaction, hyperostosis and an apparent fusion of the vertebral bodies were observed on spinal radiographs. A non-contrast computed tomography (CT) exam of the whole body of the patient was performed. Based on the medical history, clinical findings, laboratory analysis, spinal radiographs and CT findings, a lysosomal storage disorder was suspected. Genetic testing for mucopolysaccharidosis VI and VII revealed a genetic mutation, ARSB variant L476P, confirming the diagnosis of mucopolysaccharidosis type VI.
- Published
- 2022
- Full Text
- View/download PDF
9. Vegetal-derived biostimulants distinctively command the physiological and metabolomic signatures of lettuce grown in depleted nitrogen conditions
- Author
-
Christophe El-Nakhel, Francesco Cristofano, Giuseppe Colla, Youry Pii, Elena Secomandi, Marco De Gregorio, Valentina Buffagni, Pascual Garcia-Perez, Luigi Lucini, Youssef Rouphael, El Nakhel, C., Cristofano, F., Colla, G., Pii, Y., Secomandi, E., De Gregorio, M., Buffagni, V., Garcia-Perez, P., Lucini, L., and Rouphael, Y.
- Subjects
Photosynthesi ,APX ,CAT ,Metabolomic ,Plant stre ,Protein hydrolysate ,Horticulture - Abstract
Biostimulants are sustainable inputs that can be used to reduce chemical fertilizers dependency while reinforcing nutrient uptake, yield and quality of crops, and modulate plant metabolic processes. Protein hydrolysates (PHs) are prominent biostimulants that guarantee a reduction in yield loss under sub-optimal nitrogen (N) conditions. On these bases, a new Malvaceae-derived PH product was tested along a commercial legume-derived PH on soilless greenhouse-grown lettuce, to comparatively assess their activity under N depletion conditions (1 mM NO3−). Both PHs increased biometric parameters under optimal but to a lesser extent under depleted N conditions. Legume-derived PH promoted greater Fv/Fm, lutein and β-carotene under optimal N conditions and higher catalase and total phenolic acids. In contrast, Malvaceae-derived PH did not affect phenolic acids but increased leaf concentration of Ca, Mg and catalase while reducing H2O2. Biochemical changes were then evaluated through untargeted metabolomics. Metabolomics showed a hierarchically prevalent effect of the N level, with the PHs showing distinctive reprogramming under optimal and depleted N conditions. Among others, phenylpropanoids were mainly down-accumulated in stressed plants, while (polyunsaturated fatty acids) PUFA accumulated following the application of PHs. Notwithstanding, the severe depletion of N cannot be compensated by PHs treatment since biostimulants are used to complement fertilizers use and not to replace it.
- Published
- 2023
- Full Text
- View/download PDF
10. Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in
- Author
-
Mirella, Sorrentino, Klára, Panzarová, Ioannis, Spyroglou, Lukáš, Spíchal, Valentina, Buffagni, Paola, Ganugi, Youssef, Rouphael, Giuseppe, Colla, Luigi, Lucini, and Nuria, De Diego
- Abstract
Plant phenomics is becoming a common tool employed to characterize the mode of action of biostimulants. A combination of this technique with other omics such as metabolomics can offer a deeper understanding of a biostimulant effect
- Published
- 2021
11. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions
- Author
-
Valentina Buffagni, Leilei Zhang, Biancamaria Senizza, Gabriele Rocchetti, Andrea Ferrarini, Begoña Miras-Moreno, and Luigi Lucini
- Subjects
Salinity ,Solanum lycopersicum ,Spermidine ,Lipidomics ,Polyamines ,Putrescine ,Genetics ,Spermine ,Plant Science ,General Medicine ,Plant Roots ,Agronomy and Crop Science - Abstract
Polyamines (PAs) are key signaling molecules involved in plant growth and stress acclimation processes. This work investigated the effect of spermidine, spermine, and putrescine (alone and in a mixture) in tomato plants using a combined metabolomics and lipidomics approach. The experiments were carried out under non-stress and 100 mM NaCl salinity conditions. Shoot and root biomass, as well as SPAD values, were increased by the application of exogenous PAs but with differences across treatments. Similarly, root length density (F: 34, p 0.001), average root diameter (F: 14, p 0.001), and very fine roots (0.0-0.5 mm) increased in PA-treated plants, compared to control. Metabolomics and lipidomics indicated that, despite being salinity the hierarchically prevalent factor, the different PA treatments imposed distinct remodeling at the molecular level. Plants treated with putrescine showed the broader modulation of metabolite profile, whereas spermidine and spermine induced a comparatively milder effect. The pathway analysis from differential metabolites indicated a broad and multi-level intricate modulation of several signaling molecules together with stress-related compounds like flavonoids and alkaloids. Concerning signaling processes, the complex crosstalk between phytohormones (mainly abscisic acid, cytokinins, the ethylene precursor, and jasmonates), and the membrane lipids signaling cascade (in particular, sphingolipids as well as ceramides and other glycerophospholipids), was involved in such complex response of tomato to PAs. Interestingly, PA-specific processes could be observed, with peculiar responses under either control or salinity conditions.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.