44 results on '"Valárik, M."'
Search Results
2. A microcolinearity study at the earliness per se gene Eps-Am1 region reveals an ancient duplication that preceded the wheat–rice divergence
- Author
-
Valárik, M, Linkiewicz, AM, and Dubcovsky, J
- Subjects
Biotechnology ,Genetics ,Biological Evolution ,Chromosome Mapping ,Chromosomes ,Plant ,Gene Duplication ,Genetic Markers ,Molecular Sequence Data ,Oryza ,Recombination ,Genetic ,Triticum ,flowering time ,earliness per se ,wheat ,rice ,duplication ,microcolinearity ,Biological Sciences ,Agricultural and Veterinary Sciences ,Technology ,Plant Biology & Botany - Abstract
Wheat flowering is controlled by numerous genes, which respond to environmental signals such as photoperiod and vernalization. Earliness per se (Eps) genes control flowering time independently of these environmental cues and are responsible for the fine tuning of flowering time. We recently mapped the Eps-A(m)1 gene on the end of Triticum monococcum chromosome arm 1A(m)L. As a part of our efforts to clone Eps-A(m)1 we developed PCR markers flanking this gene within a 2.7 cM interval. We screened more than one thousand gametes with these markers and identified 27 lines with recombination between them. Recombinant lines were used to generate a high-density map and to investigate the microcolinearity between wheat and rice in this region. We mapped ten genes from a 149 kb region located at the distal part of rice chromosome 5 (cdo393 - Ndk3) on a 3.7 cM region on wheat chromosome one. This region is part of an ancient duplication between rice chromosomes 5 and 1. Genes present in both rice chromosomes were less similar to each other than to the closest wheat orthologues, suggesting that this duplication preceded the divergence between wheat and rice. This hypothesis was supported by the presence of 18 loci duplicated both in rice chromosomes 5 and 1 and in the colinear wheat chromosomes from homologous groups 1 and 3. Independent gene deletions in wheat and rice lineages explain the alternations of colinearity between rice chromosome 5 and wheat chromosomes 1 and 3. Colinearity between the end of rice chromosome 5 and wheat chromosome 1 was also interrupted by a small inversion, and several non-colinear genes. These results suggest that the distal region of the long arm of wheat chromosome 1 was involved in numerous changes that differentiated wheat and rice genomes. This comparative study provided sufficient markers to saturate the Eps-A(m)1 gene region and to precisely map this gene within a 0.9 cM interval flanked by the VatpC and Smp loci.
- Published
- 2006
3. Preparation of sub-genomic fractions enriched for particular chromosomes in polyploid wheat
- Author
-
Vrána, J., Kubaláková, M., Číhalíková, J., Valárik, M., and Doležel, J.
- Published
- 2015
- Full Text
- View/download PDF
4. The chromosome region including the earliness per se locus Eps-A m 1 affects the duration of early developmental phases and spikelet number in diploid wheat
- Author
-
Lewis, S., Faricelli, M. E., Appendino, M. L., Valárik, M., and Dubcovsky, J.
- Published
- 2008
- Full Text
- View/download PDF
5. The Wheat and Barley Vernalization Gene VRN3 Is an Orthologue of FT
- Author
-
Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., and Dubcovsky, J.
- Published
- 2006
- Full Text
- View/download PDF
6. Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.)
- Author
-
Valárik, M., Šimková, H., Hřibová, E., Šafář, J., Doleželová, M., and Doležel, J.
- Published
- 2002
- Full Text
- View/download PDF
7. Identification and chromosomal localization of the monkey retrotransposon in Musa sp.
- Author
-
Balint-Kurti, P. J., Clendennen, S. K., Doleželová, M., Valárik, M., Doležel, J., Beetham, P. R., and May, G. D.
- Published
- 2000
- Full Text
- View/download PDF
8. Physical mapping of the 18S-25S and 5S ribosomal RNA genes in diploid bananas
- Author
-
Doleželová, M., Valárik, M., Swennen, R., Horry, J.P., and Doležel, J.
- Published
- 1998
- Full Text
- View/download PDF
9. High-resolution FISH on super-stretched flow-sorted plant chromosomes
- Author
-
Valárik, M., Bartoš, J., Kovářová, P., Kubaláková, M., de Jong, J. H., and Doležel, J.
- Published
- 2004
10. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry
- Author
-
Kubaláková, M, Valárik, M, Bartoš, J, Vrána, J, Cíhalíková, J, Molnár-Láng, M, and Dolezel, J
- Published
- 2003
11. Shifting the limits in wheat research and breeding using a fully annotated reference genome
- Author
-
Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J., Ronen, G., Barad, O., Baruch, K., Keeble-Gagnère, G., Mascher, M., Sharpe, A.G., Ben-Zvi, G., Josselin, A-A, Himmelbach, A., Balfourier, F., Gutierrez-Gonzalez, J., Hayden, M., Koh, C., Muehlbauer, G., Pasam, R.K., Paux, E., Rigault, P., Tibbits, J., Tiwari, V., Spannagl, M., Lang, D., Gundlach, H., Haberer, G., Mayer, K.F.X., Ormanbekova, D., Prade, V., Šimková, H., Wicker, T., Swarbreck, D., Rimbert, H., Felder, M., Guilhot, N., Kaithakottil, G., Keilwagen, J., Leroy, P., Lux, T., Twardziok, S., Venturini, L., Juhász, A., Abrouk, M., Fischer, I., Uauy, C., Borrill, P., Ramirez-Gonzalez, R.H., Arnaud, D., Chalabi, S., Chalhoub, B., Cory, A., Datla, R., Davey, M.W., Jacobs, J., Robinson, S.J., Steuernagel, B., van Ex, F., Wulff, B.B.H., Benhamed, M., Bendahmane, A., Concia, L., Latrasse, D., Alaux, M., Bartoš, J., Bellec, A., Berges, H., Doležel, J., Frenkel, Z., Gill, B., Korol, A., Letellier, T., Olsen, O-A, Singh, K., Valárik, M., van der Vossen, E., Vautrin, S., Weining, S., Fahima, T., Glikson, V., Raats, D., Číhalíková, J., Toegelová, H., Vrána, J., Sourdille, P., Darrier, B., Barabaschi, D., Cattivelli, L., Hernandez, P., Galvez, S., Budak, H., Jones, J.D.G., Witek, K., Yu, G., Small, I., Melonek, J., Zhou, R., Belova, T., Kanyuka, K., King, R., Nilsen, K., Walkowiak, S., Cuthbert, R., Knox, R., Wiebe, K., Xiang, D., Rohde, A., Gold, T., Čížková, J., Akpinar, B.A., Biyiklioglu, S., Gao, L., N’Daiye, A., Kubaláková, M., Šafář, J., Alfama, F., Adam-Blondon, A-F, Flores, R., Guerche, C., Loaec, M., Quesneville, H., Condie, J., Ens, J., Koh, C.S., Maclachlan, R., Tan, Y., Alberti, A., Aury, J-M, Barbe, V., Couloux, A., Cruaud, C., Labadie, K., Mangenot, S., Wincker, P., Kaur, G., Luo, M., Sehgal, S., Chhuneja, P., Gupta, O.P., Jindal, S., Kaur, P., Malik, P., Sharma, P., Yadav, B., Singh, N.K., Khurana, J.P., Chaudhary, C., Khurana, P., Kumar, V., Mahato, A., Mathur, S., Sevanthi, A., Sharma, N., Tomar, R.S., Holušová, K., Plíhal, O., Clark, M.D., Heavens, D., Kettleborough, G., Wright, J., Balcárková, B., Hu, Y., Salina, E., Ravin, N., Skryabin, K., Beletsky, A., Kadnikov, V., Mardanov, A., Nesterov, M., Rakitin, A., Sergeeva, E., Handa, H., Kanamori, H., Katagiri, S., Kobayashi, F., Nasuda, S., Tanaka, T., Wu, J., Cattonaro, F., Jiumeng, M., Kugler, K.G., Pfeifer, M., Sandve, S., Xun, X., Zhan, B., Batley, J., Bayer, P.E., Edwards, D., Hayashi, S., Tulpová, Z., Visendi, P., Cui, L., Du, X., Feng, K., Nie, X., Tong, W., Wang, L., Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J., Ronen, G., Barad, O., Baruch, K., Keeble-Gagnère, G., Mascher, M., Sharpe, A.G., Ben-Zvi, G., Josselin, A-A, Himmelbach, A., Balfourier, F., Gutierrez-Gonzalez, J., Hayden, M., Koh, C., Muehlbauer, G., Pasam, R.K., Paux, E., Rigault, P., Tibbits, J., Tiwari, V., Spannagl, M., Lang, D., Gundlach, H., Haberer, G., Mayer, K.F.X., Ormanbekova, D., Prade, V., Šimková, H., Wicker, T., Swarbreck, D., Rimbert, H., Felder, M., Guilhot, N., Kaithakottil, G., Keilwagen, J., Leroy, P., Lux, T., Twardziok, S., Venturini, L., Juhász, A., Abrouk, M., Fischer, I., Uauy, C., Borrill, P., Ramirez-Gonzalez, R.H., Arnaud, D., Chalabi, S., Chalhoub, B., Cory, A., Datla, R., Davey, M.W., Jacobs, J., Robinson, S.J., Steuernagel, B., van Ex, F., Wulff, B.B.H., Benhamed, M., Bendahmane, A., Concia, L., Latrasse, D., Alaux, M., Bartoš, J., Bellec, A., Berges, H., Doležel, J., Frenkel, Z., Gill, B., Korol, A., Letellier, T., Olsen, O-A, Singh, K., Valárik, M., van der Vossen, E., Vautrin, S., Weining, S., Fahima, T., Glikson, V., Raats, D., Číhalíková, J., Toegelová, H., Vrána, J., Sourdille, P., Darrier, B., Barabaschi, D., Cattivelli, L., Hernandez, P., Galvez, S., Budak, H., Jones, J.D.G., Witek, K., Yu, G., Small, I., Melonek, J., Zhou, R., Belova, T., Kanyuka, K., King, R., Nilsen, K., Walkowiak, S., Cuthbert, R., Knox, R., Wiebe, K., Xiang, D., Rohde, A., Gold, T., Čížková, J., Akpinar, B.A., Biyiklioglu, S., Gao, L., N’Daiye, A., Kubaláková, M., Šafář, J., Alfama, F., Adam-Blondon, A-F, Flores, R., Guerche, C., Loaec, M., Quesneville, H., Condie, J., Ens, J., Koh, C.S., Maclachlan, R., Tan, Y., Alberti, A., Aury, J-M, Barbe, V., Couloux, A., Cruaud, C., Labadie, K., Mangenot, S., Wincker, P., Kaur, G., Luo, M., Sehgal, S., Chhuneja, P., Gupta, O.P., Jindal, S., Kaur, P., Malik, P., Sharma, P., Yadav, B., Singh, N.K., Khurana, J.P., Chaudhary, C., Khurana, P., Kumar, V., Mahato, A., Mathur, S., Sevanthi, A., Sharma, N., Tomar, R.S., Holušová, K., Plíhal, O., Clark, M.D., Heavens, D., Kettleborough, G., Wright, J., Balcárková, B., Hu, Y., Salina, E., Ravin, N., Skryabin, K., Beletsky, A., Kadnikov, V., Mardanov, A., Nesterov, M., Rakitin, A., Sergeeva, E., Handa, H., Kanamori, H., Katagiri, S., Kobayashi, F., Nasuda, S., Tanaka, T., Wu, J., Cattonaro, F., Jiumeng, M., Kugler, K.G., Pfeifer, M., Sandve, S., Xun, X., Zhan, B., Batley, J., Bayer, P.E., Edwards, D., Hayashi, S., Tulpová, Z., Visendi, P., Cui, L., Du, X., Feng, K., Nie, X., Tong, W., and Wang, L.
- Abstract
Wheat is one of the major sources of food for much of the world. However, because bread wheat's genome is a large hybrid mix of three separate subgenomes, it has been difficult to produce a high-quality reference sequence. Using recent advances in sequencing, the International Wheat Genome Sequencing Consortium presents an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. Examples of quantitative trait mapping and CRISPR-based genome modification show the potential for using this genome in agricultural research and breeding. Ramírez-González et al. exploited the fruits of this endeavor to identify tissue-specific biased gene expression and coexpression networks during development and exposure to stress. These resources will accelerate our understanding of the genetic basis of bread wheat.
- Published
- 2018
12. A COMPLEX APPROACH FOR UNRAVELLING MUSACEAE PHYLOGENY AT MOLECULAR LEVEL
- Author
-
Němcová, P., primary, Hřibová, E., additional, Valárik, M., additional, and Doležel, J., additional
- Published
- 2011
- Full Text
- View/download PDF
13. A microcolinearity study at the earliness per se gene Eps-A m 1 region reveals an ancient duplication that preceded the wheat–rice divergence
- Author
-
Valárik, M., primary, Linkiewicz, A. M., additional, and Dubcovsky, J., additional
- Published
- 2006
- Full Text
- View/download PDF
14. Analysis and sorting of rye (Secale cerealeL.) chromosomes using flow cytometry
- Author
-
Kubaláková, M, primary, Valárik, M, additional, Barto, J, additional, Vrána, J, additional, Cíhalíková, J, additional, Molnár-Láng, M, additional, and Dolezel, J, additional
- Published
- 2003
- Full Text
- View/download PDF
15. A microcolinearity study at the earliness per se gene Eps-A m 1 region reveals an ancient duplication that preceded the wheat–rice divergence.
- Author
-
Valárik, M., Linkiewicz, A. M., and Dubcovsky, J.
- Subjects
WHEAT ,RICE ,FLOWERS ,PLANT genetics ,CROP genetics ,CHROMOSOMES ,PLANT chromosomes ,GENES - Abstract
Wheat flowering is controlled by numerous genes, which respond to environmental signals such as photoperiod and vernalization. Earliness per se ( Eps) genes control flowering time independently of these environmental cues and are responsible for the fine tuning of flowering time. We recently mapped the Eps-A
m 1 gene on the end of Triticum monococcum chromosome arm 1Am L. As a part of our efforts to clone Eps-Am 1 we developed PCR markers flanking this gene within a 2.7 cM interval. We screened more than one thousand gametes with these markers and identified 27 lines with recombination between them. Recombinant lines were used to generate a high-density map and to investigate the microcolinearity between wheat and rice in this region. We mapped ten genes from a 149 kb region located at the distal part of rice chromosome 5 ( cdo393 – Ndk3) on a 3.7 cM region on wheat chromosome one. This region is part of an ancient duplication between rice chromosomes 5 and 1. Genes present in both rice chromosomes were less similar to each other than to the closest wheat orthologues, suggesting that this duplication preceded the divergence between wheat and rice. This hypothesis was supported by the presence of 18 loci duplicated both in rice chromosomes 5 and 1 and in the colinear wheat chromosomes from homoeologous groups 1 and 3. Independent gene deletions in wheat and rice lineages explain the alternations of colinearity between rice chromosome 5 and wheat chromosomes 1 and 3. Colinearity between the end of rice chromosome 5 and wheat chromosome 1 was also interrupted by a small inversion, and several non-colinear genes. These results suggest that the distal region of the long arm of wheat chromosome 1 was involved in numerous changes that differentiated wheat and rice genomes. This comparative study provided sufficient markers to saturate the Eps-Am 1 gene region and to precisely map this gene within a 0.9 cM interval flanked by the VatpC and Smp loci. [ABSTRACT FROM AUTHOR]- Published
- 2006
- Full Text
- View/download PDF
16. Technical Advance High-resolution FISH on super-stretched flow-sorted plant chromosomes.
- Author
-
Valárik, M., Bartoš, J., Kovářová, P., Kubaláková, M., De Jong, J. H., and Doležel, J.
- Subjects
- *
GENETICS , *EMBRYOLOGY , *TECHNOLOGICAL innovations , *CHROMOSOMES , *CELL nuclei , *FISHES - Abstract
A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for plant species with large chromosomes, whose pachytene chromosomes are generally too long and heterochromatin patterns too complex for FISH analysis. The protocol involves flow cytometric sorting of metaphase chromosomes, mild proteinase-K digestion of air-dried chromosomes on microscopic slides, followed by stretching with ethanol:acetic acid (3 : 1). Stretching ratios were assessed in a number of FISH experiments with super-stretched chromosomes from barley, wheat, rye and chickpea, hybridised with 45S and 5S ribosomal DNAs and the [GAA] n microsatellite, the [TTTAGGG] n telomeric repeat and a bacterial artificial chromosome (BAC) clone as probes. FISH signals on stretched chromosomes were brighter than those on the untreated control, resulting from better accessibility of the stretched chromatin and maximum observed sensitivity of 1 kbp. Spatial resolution of neighbouring loci was improved down to 70 kbp as compared to 5–10 Mbp after FISH on mitotic chromosomes, revealing details of adjacent DNA sequences hitherto not obtained with any other method. Stretched chromosomes are advantageous over extended DNA fibres from interphase nuclei as targets for FISH studies because they still retain chromosomal integrity. Although the method is confined to species for which chromosome flow sorting has been developed, it provides a unique system for controlling stretching degree of mitotic chromosomes and high-resolution bar-code FISH. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
17. DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1.
- Author
-
Gaál E, Farkas A, Türkösi E, Kruppa K, Szakács É, Szőke-Pázsi K, Kovács P, Kalapos B, Darkó É, Said M, Lampar A, Ivanizs L, Valárik M, Doležel J, and Molnár I
- Subjects
- Genotype, Genetic Introgression, Genetic Markers, Genotyping Techniques, Plant Breeding methods, Chromosome Mapping, Triticum genetics, Aegilops genetics, Chromatin genetics, Chromatin metabolism, Chromosomes, Plant genetics, Genome, Plant
- Abstract
Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed U
b - and Mb -genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub -genome chromosomes and 4,266 to Mb -genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub -genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb -genome chromatin, predominantly the chromosomes 4Mb and 5Mb . The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5Mb L recombination were identified. A possible effect of the 5Mb L distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
18. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency.
- Author
-
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, and Valárik M
- Subjects
- Plant Breeding, Chromosomes, DNA, Chromatin genetics, Triticum genetics
- Abstract
Introduction: Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood., Objectives: This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus., Methods: The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti., Results: The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation., Conclusion: Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Production and hosting by Elsevier B.V.)
- Published
- 2023
- Full Text
- View/download PDF
19. Identification, High-Density Mapping, and Characterization of New Major Powdery Mildew Resistance Loci From the Emmer Wheat Landrace GZ1.
- Author
-
Korchanová Z, Švec M, Janáková E, Lampar A, Majka M, Holušová K, Bonchev G, Juračka J, Cápal P, and Valárik M
- Abstract
Powdery mildew is one of the most devastating diseases of wheat which significantly decreases yield and quality. Identification of new sources of resistance and their implementation in breeding programs is the most effective way of disease control. Two major powdery mildew resistance loci conferring resistance to all races in seedling and adult plant stages were identified in the emmer wheat landrace GZ1. Their positions, effects, and transferability were verified using two linkage maps (1,510 codominant SNP markers) constructed from two mapping populations (276 lines in total) based on the resistant GZ1 line. The dominant resistance locus QPm.GZ1-7A was located in a 90 cM interval of chromosome 7AL and explains up to 20% of the trait variation. The recessive locus QPm.GZ1-2A , which provides total resistance, explains up to 40% of the trait variation and was located in the distal part of chromosome 2AL. The locus was saturated with 14 PCR-based markers and delimited to a 0.99 cM region which corresponds to 4.3 Mb of the cv. Zavitan reference genome and comprises 55 predicted genes with no apparent candidate for the QPm.GZ1-2A resistance gene. No recessive resistance gene or allele was located at the locus before, suggesting the presence of a new powdery mildew resistance gene in the GZ1. The mapping data and markers could be used for the implementation of the locus in breeding. Moreover, they are an ideal base for cloning and study of host-pathogen interaction pathways determined by the resistance genes., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Korchanová, Švec, Janáková, Lampar, Majka, Holušová, Bonchev, Juračka, Cápal and Valárik.)
- Published
- 2022
- Full Text
- View/download PDF
20. Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing.
- Author
-
Bansal M, Adamski NM, Toor PI, Kaur S, Molnár I, Holušová K, Vrána J, Doležel J, Valárik M, Uauy C, and Chhuneja P
- Subjects
- Basidiomycota growth & development, Basidiomycota pathogenicity, Chromosome Mapping, Chromosomes, Plant, Genes, Plant, Genetic Introgression, Genetic Markers, High-Throughput Nucleotide Sequencing, Phenotype, Plant Breeding, Plant Diseases microbiology, Plant Leaves genetics, Plant Leaves microbiology, Polymorphism, Single Nucleotide, Recombination, Genetic, Triticum microbiology, Aegilops genetics, Disease Resistance genetics, Plant Diseases genetics, Telomere genetics, Triticum genetics
- Abstract
Key Message: Lr76 and Yr70 have been fine mapped using the sequence of flow-sorted recombinant 5D chromosome from wheat-Ae. umbellulata introgression line. The alien introgression has been delineated to 9.47-Mb region on short arm of wheat chromosome 5D. Leaf rust and stripe rust are among the most damaging diseases of wheat worldwide. Wheat cultivation based on limited number of rust resistance genes deployed over vast areas expedites the emergence of new pathotypes warranting a continuous deployment of new resistance genes. In this paper, fine mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance genes Lr76 and Yr70 is being reported. We flow sorted and paired-end sequenced 5U chromosome of Ae. umbellulata, recombinant chromosome 5D (5D
IL ) from wheat-Ae. umbellulata introgression line pau16057 and 5DRP of recurrent parent WL711. Chromosome 5U reads were mapped against the reference Chinese Spring chromosome 5D sequence, and alien-specific SNPs were identified. Chromosome 5DIL and 5DRP sequences were de novo assembled, and alien introgression-specific markers were designed by selecting 5U- and 5D-specific SNPs. Overall, 27 KASP markers were mapped in high-resolution population consisting of 1404 F5 RILs. The mapping population segregated for single gene each for leaf rust and stripe rust resistance. The physical order of the SNPs in pau16057 was defined by projecting the 27 SNPs against the IWGSC RefSeq v1.0 sequence. Based on this physical map, the size of Ae. umbellulata introgression was determined to be 9.47 Mb on the distal most end of the short arm of chromosome 5D. This non-recombining alien segment carries six NB-LRR encoding genes based on NLR annotation of assembled chromosome 5DIL sequence and IWGSC RefSeq v1.1 gene models. The presence of SNPs and other sequence variations in these genes between pau16057 and WL711 suggested that they are candidates for Lr76 and Yr70.- Published
- 2020
- Full Text
- View/download PDF
21. Fine Mapping of Lr49 Using 90K SNP Chip Array and Flow-Sorted Chromosome Sequencing in Wheat.
- Author
-
Nsabiyera V, Baranwal D, Qureshi N, Kay P, Forrest K, Valárik M, Doležel J, Hayden MJ, Bariana HS, and Bansal UK
- Abstract
Leaf rust, caused by Puccinia triticina , threatens global wheat production due to the constant evolution of virulent pathotypes that defeat commercially deployed all stage-resistance (ASR) genes in modern cultivars. Hence, the deployment of combinations of adult plant resistance (APR) and ASR genes in new wheat cultivars is desirable. Adult plant resistance gene Lr49 was previously mapped on the long arm of chromosome 4B of cultivar VL404 and flanked by microsatellite markers barc163 (8.1 cM) and wmc349 (10.1 cM), neither of which was sufficiently closely linked for efficient marker assisted selection. This study used high-density SNP genotyping and flow sorted chromosome sequencing to fine-map the Lr49 locus as a starting point to develop a diagnostic marker for use in breeding and to clone this gene. Marker sunKASP_21 was mapped 0.4 cM proximal to Lr49 , whereas a group of markers including sunKASP_24 were placed 0.6 cM distal to this gene. Testing of the linked markers on 75 Australian and 90 European cultivars with diverse genetic backgrounds showed that sunKASP _ 21 was most strongly associated with Lr49 . Our results also show that the Lr49 genomic region contains structural variation relative to the reference stock Chinese Spring, possibly an inverted genomic duplication, which introduces a new set of challenges for the Lr49 cloning., (Copyright © 2020 Nsabiyera, Baranwal, Qureshi, Kay, Forrest, Valárik, Doležel, Hayden, Bariana and Bansal.)
- Published
- 2020
- Full Text
- View/download PDF
22. Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene.
- Author
-
Janáková E, Jakobson I, Peusha H, Abrouk M, Škopová M, Šimková H, Šafář J, Vrána J, Doležel J, Järve K, and Valárik M
- Subjects
- Bread, Chromosome Mapping, Chromosomes, Plant genetics, Cloning, Molecular, Molecular Sequence Annotation, Plant Diseases genetics, Plant Diseases microbiology, Triticum immunology, Ascomycota physiology, Disease Resistance genetics, Genes, Plant, Genetic Loci, Genetic Variation, Plant Diseases immunology, Triticum genetics, Triticum microbiology
- Abstract
A segment of Triticum militinae chromosome 7G harbors a gene(s) conferring powdery mildew resistance which is effective at both the seedling and the adult plant stages when transferred into bread wheat (T. aestivum). The introgressed segment replaces a piece of wheat chromosome arm 4AL. An analysis of segregating materials generated to positionally clone the gene highlighted that in a plant heterozygous for the introgression segment, only limited recombination occurs between the introgressed region and bread wheat 4A. Nevertheless, 75 genetic markers were successfully placed within the region, thereby confining the gene to a 0.012 cM window along the 4AL arm. In a background lacking the Ph1 locus, the localized rate of recombination was raised 33-fold, enabling the reduction in the length of the region containing the resistance gene to a 480 kbp stretch harboring 12 predicted genes. The substituted segment in the reference sequence of bread wheat cv. Chinese Spring is longer (640 kbp) and harbors 16 genes. A comparison of the segments' sequences revealed a high degree of divergence with respect to both their gene content and nucleotide sequence. Of the 12 T. militinae genes, only four have a homolog in cv. Chinese Spring. Possible candidate genes for the resistance have been identified based on function predicted from their sequence.
- Published
- 2019
- Full Text
- View/download PDF
23. Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes.
- Author
-
Gaál E, Valárik M, Molnár I, Farkas A, and Linc G
- Subjects
- Genetic Markers, Chromosome Mapping, Chromosomes, Plant genetics, Evolution, Molecular, Gene Rearrangement, Genome, Plant, Triticum genetics
- Abstract
Thinopyrum elongatum (Host) D.R. Dewey has served as an important gene source for wheat breeding improvement for many years. The exact characterization of its chromosomes is important for the detailed analysis of prebreeding materials produced with this species. The major aim of this study was to identify and characterize new molecular markers to be used for the rapid analysis of E genome chromatin in wheat background. Sixty of the 169 conserved orthologous set (COS) markers tested on diverse wheat-Th. elongatum disomic/ditelosomic addition lines were assigned to various Th. elongatum chromosomes and will be used for marker-assisted selection. The macrosyntenic relationship between the wheat and Th. elongatum genomes was investigated using EST sequences. Several rearrangements were revealed in homoeologous chromosome groups 2, 5, 6 and 7, while chromosomes 1 and 4 were conserved. Molecular cytogenetic and marker analysis showed the presence of rearranged chromosome involved in 6ES and 2EL arms in the 6E disomic addition line. The selected chromosome arm-specific COS markers will make it possible to identify gene introgressions in breeding programmes and will also be useful in the development of new chromosome-specific markers, evolutionary analysis and gene mapping., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
24. Correction: Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.
- Author
-
Ivaničová Z, Valárik M, Pánková K, Trávníčková M, Doležel J, Šafář J, and Milec Z
- Abstract
[This corrects the article DOI: 10.1371/journal.pone.0183745.].
- Published
- 2018
- Full Text
- View/download PDF
25. Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm.
- Author
-
Shorinola O, Balcárková B, Hyles J, Tibbits JFG, Hayden MJ, Holušova K, Valárik M, Distelfeld A, Torada A, Barrero JM, and Uauy C
- Abstract
Pre-harvest sprouting (PHS) is an important cause of quality loss in many cereal crops and is particularly prevalent and damaging in wheat. Resistance to PHS is therefore a valuable target trait in many breeding programs. The Phs-A1 locus on wheat chromosome arm 4AL has been consistently shown to account for a significant proportion of natural variation to PHS in diverse mapping populations. However, the deployment of sprouting resistance is confounded by the fact that different candidate genes, including the tandem duplicated Plasma Membrane 19 ( PM19 ) genes and the mitogen-activated protein kinase kinase 3 ( TaMKK3-A) gene, have been proposed to underlie Phs-A1 . To further define the Phs-A1 locus, we constructed a physical map across this interval in hexaploid and tetraploid wheat. We established close proximity of the proposed candidate genes which are located within a 1.2 Mb interval. Genetic characterization of diverse germplasm used in previous genetic mapping studies suggests that TaMKK3-A , and not PM19 , is the major gene underlying the Phs-A1 effect in European, North American, Australian and Asian germplasm. We identified the non-dormant TaMKK3-A allele at low frequencies within the A-genome diploid progenitor Triticum urartu genepool, and show an increase in the allele frequency in modern varieties. In United Kingdom varieties, the frequency of the dormant TaMKK3-A allele was significantly higher in bread-making quality varieties compared to feed and biscuit-making cultivars. Analysis of exome capture data from 58 diverse hexaploid wheat accessions identified fourteen haplotypes across the extended Phs-A1 locus and four haplotypes for TaMKK3-A . Analysis of these haplotypes in a collection of United Kingdom and Australian cultivars revealed distinct major dormant and non-dormant Phs-A1 haplotypes in each country, which were either rare or absent in the opposing germplasm set. The diagnostic markers and haplotype information reported in the study will help inform the choice of germplasm and breeding strategies for the deployment of Phs-A1 resistance into breeding germplasm.
- Published
- 2017
- Full Text
- View/download PDF
26. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.
- Author
-
Ivaničová Z, Valárik M, Pánková K, Trávníčková M, Doležel J, Šafář J, and Milec Z
- Subjects
- DNA Copy Number Variations, DNA Methylation, Photoperiod, Promoter Regions, Genetic, Quantitative Trait Loci, Triticum physiology, Genes, Plant, Genetic Variation, Triticum genetics
- Abstract
The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.
- Published
- 2017
- Full Text
- View/download PDF
27. The in silico identification and characterization of a bread wheat/Triticum militinae introgression line.
- Author
-
Abrouk M, Balcárková B, Šimková H, Komínkova E, Martis MM, Jakobson I, Timofejeva L, Rey E, Vrána J, Kilian A, Järve K, Doležel J, and Valárik M
- Subjects
- Ascomycota pathogenicity, Base Sequence, Bread, Chromosome Mapping, Chromosomes, Plant genetics, Chromosomes, Plant metabolism, Computer Simulation, DNA, Plant genetics, Disease Resistance, Genes, Plant, Genetic Markers, Microsatellite Repeats, Plant Diseases genetics, Plant Diseases microbiology, Translocation, Genetic, Triticum microbiology, Triticum genetics
- Abstract
The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies., (© 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
28. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A.
- Author
-
Balcárková B, Frenkel Z, Škopová M, Abrouk M, Kumar A, Chao S, Kianian SF, Akhunov E, Korol AB, Doležel J, and Valárik M
- Abstract
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.
- Published
- 2017
- Full Text
- View/download PDF
29. Genetic Diversity of Blumeria graminis f. sp. hordei in Central Europe and Its Comparison with Australian Population.
- Author
-
Komínková E, Dreiseitl A, Malečková E, Doležel J, and Valárik M
- Subjects
- Ascomycota isolation & purification, Australia, Czech Republic, Random Amplified Polymorphic DNA Technique, Ascomycota genetics, DNA, Fungal genetics, Phylogeny, Polymorphism, Genetic
- Abstract
Population surveys of Blumeria graminis f. sp. hordei (Bgh), a causal agent of more than 50% of barley fungal infections in the Czech Republic, have been traditionally based on virulence tests, at times supplemented with non-specific Restriction fragment length polymorphism or Random amplified polymorphic DNA markers. A genomic sequence of Bgh, which has become available recently, enables identification of potential markers suitable for population genetics studies. Two major strategies relying on transposable elements and microsatellites were employed in this work to develop a set of Repeat junction markers, Single sequence repeat and Single nucleotide polymorphism markers. A resolution power of the new panel of markers comprising 33 polymorphisms was demonstrated by a phylogenetic analysis of 158 Bgh isolates. A core set of 97 Czech isolates was compared to a set 50 Australian isolates on the background of 11 diverse isolates collected throughout the world. 73.2% of Czech isolates were found to be genetically unique. An extreme diversity of this collection was in strong contrast with the uniformity of the Australian one. This work paves the way for studies of population structure and dynamics based on genetic variability among different Bgh isolates originating from geographically limited regions., Competing Interests: AD is employed by Agrotest Fyto Ltd. There are no patents, products in development or marketed products to declare. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.
- Published
- 2016
- Full Text
- View/download PDF
30. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae.
- Author
-
Ivaničová Z, Jakobson I, Reis D, Šafář J, Milec Z, Abrouk M, Doležel J, Järve K, and Valárik M
- Subjects
- Alleles, Biotechnology, Bread, Breeding, Flowers genetics, Flowers growth & development, Genes, Plant, Quantitative Trait Loci, Seasons, Triticum genetics, Triticum growth & development
- Abstract
Flowering time variation was identified within a mapping population of doubled haploid lines developed from a cross between the introgressive line 8.1 and spring bread wheat cv. Tähti. The line 8.1 carried introgressions from tetraploid Triticum militinae in the cv. Tähti genetic background on chromosomes 1A, 2A, 4A, 5A, 7A, 1B and 5B. The most significant QTL for the flowering time variation was identified within the introgressed region on chromosome 5A and its largest effect was associated with the VRN-A1 locus, accounting for up to 70% of phenotypic variance. The allele of T. militinae origin was designated as VRN-A1f-like. The effect of the VRN-A1f-like allele was verified in two other mapping populations. QTL analysis identified that in cv. Tähti and cv. Mooni genetic background, VRN-A1f-like allele incurred a delay of 1.9-18.6 days in flowering time, depending on growing conditions. Sequence comparison of the VRN-A1f-like and VRN-A1a alleles from the parental lines of the mapping populations revealed major mutations in the promoter region as well as in the first intron, including insertion of a MITE element and a large deletion. The sequence variation allowed construction of specific diagnostic PCR markers for VRN-A1f-like allele determination. Identification and quantification of the effect of the VRN-A1f-like allele offers a useful tool for wheat breeding and for studying fine-scale regulation of flowering pathways in wheat., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
31. Erratum to: Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium.
- Author
-
Faricelli ME, Valárik M, and Dubcovsky J
- Published
- 2016
- Full Text
- View/download PDF
32. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm.
- Author
-
Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcárková B, Valárik M, Holdsworth MJ, Flintham J, and Uauy C
- Subjects
- Chromosome Mapping, Chromosomes, Plant genetics, Chromosomes, Plant physiology, Genes, Plant genetics, Genes, Plant physiology, Genotyping Techniques, Germination genetics, Plant Dormancy genetics, Polymorphism, Single Nucleotide genetics, Quantitative Trait Loci physiology, Triticum genetics, Germination physiology, Plant Dormancy physiology, Quantitative Trait Loci genetics, Triticum growth & development
- Abstract
The precocious germination of cereal grains before harvest, also known as pre-harvest sprouting, is an important source of yield and quality loss in cereal production. Pre-harvest sprouting is a complex grain defect and is becoming an increasing challenge due to changing climate patterns. Resistance to sprouting is multi-genic, although a significant proportion of the sprouting variation in modern wheat cultivars is controlled by a few major quantitative trait loci, including Phs-A1 in chromosome arm 4AL. Despite its importance, little is known about the physiological basis and the gene(s) underlying this important locus. In this study, we characterized Phs-A1 and show that it confers resistance to sprouting damage by affecting the rate of dormancy loss during dry seed after-ripening. We show Phs-A1 to be effective even when seeds develop at low temperature (13 °C). Comparative analysis of syntenic Phs-A1 intervals in wheat and Brachypodium uncovered ten orthologous genes, including the Plasma Membrane 19 genes (PM19-A1 and PM19-A2) previously proposed as the main candidates for this locus. However, high-resolution fine-mapping in two bi-parental UK mapping populations delimited Phs-A1 to an interval 0.3 cM distal to the PM19 genes. This study suggests the possibility that more than one causal gene underlies this major pre-harvest sprouting locus. The information and resources reported in this study will help test this hypothesis across a wider set of germplasm and will be of importance for breeding more sprouting resilient wheat varieties., (© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Published
- 2016
- Full Text
- View/download PDF
33. Chromosomal genomics facilitates fine mapping of a Russian wheat aphid resistance gene.
- Author
-
Staňková H, Valárik M, Lapitan NL, Berkman PJ, Batley J, Edwards D, Luo MC, Tulpová Z, Kubaláková M, Stein N, Doležel J, and Šimková H
- Subjects
- Animals, Chromosomes, Artificial, Bacterial, Chromosomes, Plant, DNA Primers, DNA, Plant genetics, Genetic Linkage, Genetic Markers, Genomics, Herbivory, Microsatellite Repeats, Polymorphism, Single Nucleotide, Russia, Synteny, Aphids, Chromosome Mapping, Genes, Plant, Triticum genetics
- Abstract
Key Message: Making use of wheat chromosomal resources, we developed 11 gene-associated markers for the region of interest, which allowed reducing gene interval and spanning it by four BAC clones. Positional gene cloning and targeted marker development in bread wheat are hampered by high complexity and polyploidy of its nuclear genome. Aiming to clone a Russian wheat aphid resistance gene Dn2401 located on wheat chromosome arm 7DS, we have developed a strategy overcoming problems due to polyploidy and enabling efficient development of gene-associated markers from the region of interest. We employed information gathered by GenomeZipper, a synteny-based tool combining sequence data of rice, Brachypodium, sorghum and barley, and took advantage of a high-density linkage map of Aegilops tauschii. To ensure genome- and locus-specificity of markers, we made use of survey sequence assemblies of isolated wheat chromosomes 7A, 7B and 7D. Despite the low level of polymorphism of the wheat D subgenome, our approach allowed us to add in an efficient and cost-effective manner 11 new gene-associated markers in the Dn2401 region and narrow down the target interval to 0.83 cM. Screening 7DS-specific BAC library with the flanking markers revealed a contig of four BAC clones that span the Dn2401 region in wheat cultivar 'Chinese Spring'. With the availability of sequence assemblies and GenomeZippers for each of the wheat chromosome arms, the proposed strategy can be applied for focused marker development in any region of the wheat genome.
- Published
- 2015
- Full Text
- View/download PDF
34. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing.
- Author
-
Helguera M, Rivarola M, Clavijo B, Martis MM, Vanzetti LS, González S, Garbus I, Leroy P, Šimková H, Valárik M, Caccamo M, Doležel J, Mayer KFX, Feuillet C, Tranquilli G, Paniego N, and Echenique V
- Subjects
- Chromosome Mapping, Expressed Sequence Tags chemistry, High-Throughput Nucleotide Sequencing, Molecular Sequence Data, Sequence Analysis, DNA, Chromosomes, Plant, Gene Order, Triticum genetics
- Abstract
Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information., (Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
35. Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat.
- Author
-
Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, and Bariana H
- Subjects
- Base Sequence, Basidiomycota genetics, DNA Primers, Genetic Markers, Triticum microbiology, Basidiomycota pathogenicity, Chromosome Mapping, Chromosomes, Plant, Triticum genetics
- Abstract
Key Message: This manuscript describes the chromosomal location of a new source of stripe rust resistance in wheat. DNA markers closely linked with the resistance locus were identified and validated. A wheat landrace, AUS27858, from the Watkins collection showed high levels of resistance against Australian pathotypes of Puccinia striiformis f. sp. tritici. It was reported to carry two genes for stripe rust resistance, tentatively named YrAW1 and YrAW2. One hundred seeds of an F3 line (HSB#5515; YrAW1yrAW1) that showed monogenic segregation for stripe rust response were sown and harvested individually to generate monogenically segregating population (MSP) #5515. Stripe rust response variation in MSP#5515 conformed to segregation at a single locus. Bulked segregant analysis using high-throughput DArT markers placed YrAW1 in chromosome 4AL. MSP#5515 was advanced to F6 and phenotyped for detailed mapping. Novel wheat genomic resources including chromosome-specific sequence and genome zipper were employed to develop markers specific for the long arm of chromosome 4A. These markers were used for further saturation of the YrAW1 carrying region. YrAW1 was delimited by 3.7 cM between markers owm45F3R3 and sun104. Since there was no other stripe rust resistance gene located in chromosome 4AL, YrAW1 was formally named Yr51. Reference stock for Yr51 was lodged at the Australian Winter Cereal Collection, Tamworth, Australia and it was accessioned as AUS91456. Marker sun104 was genotyped on a set of Australian and Indian wheat cultivars and was shown to lack the resistance-linked sun104-225 bp allele. Marker sun104 is currently being used for marker-assisted backcrossing of Yr51 in Australian and Indian wheat backgrounds.
- Published
- 2014
- Full Text
- View/download PDF
36. Can a late bloomer become an early bird? Tools for flowering time adjustment.
- Author
-
Milec Z, Valárik M, Bartoš J, and Safář J
- Subjects
- Biotechnology, Breeding, Genetic Engineering, Crops, Agricultural genetics, Crops, Agricultural physiology, Flowers genetics, Flowers physiology, Photoperiod, Plants, Genetically Modified genetics, Plants, Genetically Modified physiology
- Abstract
The transition from the vegetative to reproductive stage followed by inflorescence is a critical step in plant life; therefore, studies of the genes that influence flowering time have always been of great interest to scientists. Flowering is a process controlled by many genes interacting mutually in a genetic network, and several hypothesis and models of flowering have been suggested so far. Plants in temperate climatic conditions must respond mainly to changes in the day length (photoperiod) and unfavourable winter temperatures. To avoid flowering before winter, some plants exploit a specific mechanism called vernalization. This review summarises current achievements in the study of genes controlling flowering in the dicot model species thale cress (Arabidopsis thaliana), as well as in monocot model species rice (Oryza sativa) and temperate cereals such as barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). The control of flowering in crops is an attractive target for modern plant breeding efforts aiming to prepare locally well-adapted cultivars. The recent progress in genomics revealed the importance of minor-effect genes (QTLs) and natural allelic variation of genes for fine-tuning flowering and better cultivar adaptation. We briefly describe the up-to-date technologies and approaches that scientists may employ and we also indicate how these modern biotechnological tools and "-omics" can expand our knowledge of flowering in agronomically important crops., (© 2013.)
- Published
- 2014
- Full Text
- View/download PDF
37. Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat-Triticum militinae introgression line.
- Author
-
Jakobson I, Reis D, Tiidema A, Peusha H, Timofejeva L, Valárik M, Kladivová M, Simková H, Doležel J, and Järve K
- Subjects
- Bread, Breeding, Chromosomes, Plant genetics, Chromosomes, Plant metabolism, Crosses, Genetic, DNA, Plant genetics, Disease Resistance immunology, Genetic Markers, Haploidy, Linkage Disequilibrium, Microsatellite Repeats, Plant Diseases immunology, Quantitative Trait Loci, Reproducibility of Results, Seedlings microbiology, Ascomycota pathogenicity, Chromosome Mapping methods, Genes, Plant, Plant Diseases microbiology, Triticum genetics
- Abstract
Introgression of several genomic loci from tetraploid Triticum militinae into bread wheat cv. Tähti has increased resistance of introgression line 8.1 to powdery mildew in seedlings and adult plants. In our previous work, only a major quantitative trait locus (QTL) on chromosome 4AL of the line 8.1 contributed significantly to resistance, whereas QTL on chromosomes 1A, 1B, 2A, 5A and 5B were detected merely on a suggestive level. To verify and characterize all QTLs in the line 8.1, a mapping population of double haploid lines was established. Testing for seedling resistance to 16 different races/mixtures of Blumeria graminis f. sp. tritici revealed four highly significant non-race-specific resistance QTL including the main QTL on chromosome 4AL, and a race-specific QTL on chromosome 5B. The major QTL on chromosome 4AL (QPm.tut-4A) as well as QTL on chromosome 5AL and a newly detected QTL on 7AL were highly effective at the adult stage. The QPm.tut-4A QTL accounts on average for 33-49 % of the variation in resistance in the double haploid population. Interactions between the main QTL QPm.tut-4A and the minor QTL were evaluated and discussed. A population of 98 F(2) plants from a cross of susceptible cv. Chinese Spring and the line 8.1 was created that allowed mapping the QPm.tut-4A locus to the proximal 2.5-cM region of the introgressed segment on chromosome 4AL. The results obtained in this work make it feasible to use QPm.tut-4A in resistance breeding and provide a solid basis for positional cloning of the major QTL.
- Published
- 2012
- Full Text
- View/download PDF
38. Subgenomic analysis of microRNAs in polyploid wheat.
- Author
-
Kantar M, Akpınar BA, Valárik M, Lucas SJ, Doležel J, Hernández P, and Budak H
- Subjects
- Base Sequence, Chromosomes, Plant genetics, Conserved Sequence, Databases, Genetic, Expressed Sequence Tags, Flowers genetics, Gene Expression Regulation, Plant, MicroRNAs genetics, Nucleic Acid Conformation, Oryza genetics, RNA, Plant genetics, Sequence Analysis, RNA methods, Synteny, Genome, Plant, MicroRNAs analysis, Polyploidy, RNA, Plant analysis, Triticum genetics
- Abstract
In this study, a survey of miRNAs using the next-generation sequencing data was performed at subgenomic level. After analyzing shotgun sequences from chromosome 4A of bread wheat (Triticum aestivum L.), a total of 68 different miRNAs were predicted in silico, of which 37 were identified in wheat for the first time. The long arm of the chromosome was found to harbor a higher variety (51) and representation (3,928) of miRNAs compared with the short arm (49; 2,226). Out of the 68 miRNAs, 32 were detected to be common to both arms, revealing the presence of separate miRNA clusters in the two chromosome arms. The differences in degree of representation of the different miRNAs were found to be highly variable, ranging 592-fold, which may have an effect on target regulation. Targets were retrieved for 62 (out of 68) of wheat-specific, newly identified miRNAs indicated that fundamental aspects of plant morphology such as height and flowering were predicted to be affected. In silico expression blast analysis indicated 24 (out of 68) were found to give hits to expressed sequences. This is the first report of species- and chromosome-specific miRNAs.
- Published
- 2012
- Full Text
- View/download PDF
39. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content.
- Author
-
Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, Jouve N, Šimková H, Valárik M, Doležel J, and Mayer KF
- Subjects
- DNA, Plant genetics, Genome, Plant, Sequence Analysis, DNA, Chromosome Mapping, Chromosomes, Plant, Synteny, Triticum genetics
- Abstract
Wheat is the third most important crop for human nutrition in the world. The availability of high-resolution genetic and physical maps and ultimately a complete genome sequence holds great promise for breeding improved varieties to cope with increasing food demand under the conditions of changing global climate. However, the large size of the bread wheat (Triticum aestivum) genome (approximately 17 Gb/1C) and the triplication of genic sequence resulting from its hexaploid status have impeded genome sequencing of this important crop species. Here we describe the use of mitotic chromosome flow sorting to separately purify and then shotgun-sequence a pair of telocentric chromosomes that together form chromosome 4A (856 Mb/1C) of wheat. The isolation of this much reduced template and the consequent avoidance of the problem of sequence duplication, in conjunction with synteny-based comparisons with other grass genomes, have facilitated construction of an ordered gene map of chromosome 4A, embracing ≥85% of its total gene content, and have enabled precise localization of the various translocation and inversion breakpoints on chromosome 4A that differentiate it from its progenitor chromosome in the A genome diploid donor. The gene map of chromosome 4A, together with the emerging sequences of homoeologous wheat chromosome groups 4, 5 and 7, represent unique resources that will allow us to obtain new insights into the evolutionary dynamics between homoeologous chromosomes and syntenic chromosomal regions., (© 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.)
- Published
- 2012
- Full Text
- View/download PDF
40. A multi gene sequence-based phylogeny of the Musaceae (banana) family.
- Author
-
Christelová P, Valárik M, Hřibová E, De Langhe E, and Doležel J
- Subjects
- Evolution, Molecular, Musa classification, Musa genetics, Musaceae genetics, Classification methods, Musaceae classification, Phylogeny, Sequence Analysis, DNA methods
- Abstract
Background: The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes., Results: The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained., Conclusions: The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.
- Published
- 2011
- Full Text
- View/download PDF
41. A platform for efficient genotyping in Musa using microsatellite markers.
- Author
-
Christelová P, Valárik M, Hřibová E, Van den Houwe I, Channelière S, Roux N, and Doležel J
- Abstract
Background and Aims: Bananas and plantains (Musa spp.) are one of the major fruit crops worldwide with acknowledged importance as a staple food for millions of people. The rich genetic diversity of this crop is, however, endangered by diseases, adverse environmental conditions and changed farming practices, and the need for its characterization and preservation is urgent. With the aim of providing a simple and robust approach for molecular characterization of Musa species, we developed an optimized genotyping platform using 19 published simple sequence repeat markers., Methodology: The genotyping system is based on 19 microsatellite loci, which are scored using fluorescently labelled primers and high-throughput capillary electrophoresis separation with high resolution. This genotyping platform was tested and optimized on a set of 70 diploid and 38 triploid banana accessions., Principal Results: The marker set used in this study provided enough polymorphism to discriminate between individual species, subspecies and subgroups of all accessions of Musa. Likewise, the capability of identifying duplicate samples was confirmed. Based on the results of a blind test, the genotyping system was confirmed to be suitable for characterization of unknown accessions., Conclusions: Here we report on the first complex and standardized platform for molecular characterization of Musa germplasm that is ready to use for the wider Musa research and breeding community. We believe that this genotyping system offers a versatile tool that can accommodate all possible requirements for characterizing Musa diversity, and is economical for samples ranging from one to many accessions.
- Published
- 2011
- Full Text
- View/download PDF
42. Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium.
- Author
-
Faricelli ME, Valárik M, and Dubcovsky J
- Subjects
- Base Sequence, Genes, Plant, Genetic Variation, Molecular Sequence Data, Physical Chromosome Mapping, Reverse Transcriptase Polymerase Chain Reaction, Time Factors, Flowers genetics, Flowers growth & development, Oryza genetics, Poaceae genetics, Seeds genetics, Seeds growth & development, Triticum genetics
- Abstract
The earliness per se gene Eps-A ( m ) 1 from diploid wheat Triticum monococcum affects heading time, spike development, and spikelet number. In this study, the Eps1 orthologous regions from rice, Aegilops tauschii, and Brachypodium distachyon were compared as part of current efforts to clone this gene. A single Brachypodium BAC clone spanned the Eps-A ( m ) 1 region, but a gap was detected in the A. tauschii physical map. Sequencing of the Brachypodium and A. tauschii BAC clones revealed three genes shared by the three species, which showed higher identity between wheat and Brachypodium than between them and rice. However, most of the structural changes were detected in the wheat lineage. These included an inversion encompassing the wg241-VatpC region and the presence of six unique genes. In contrast, only one unique gene (and one pseudogene) was found in Brachypodium and none in rice. Three genes were present in both Brachypodium and wheat but were absent in rice. Two of these genes, Mot1 and FtsH4, were completely linked to the earliness per se phenotype in the T. monococcum high-density genetic map and are candidates for Eps-A ( m ) 1. Both genes were expressed in apices and developing spikes, as expected for Eps-A ( m ) 1 candidates. The predicted MOT1 protein showed amino acid differences between the parental T. monococcum lines, but its effect is difficult to predict. Future steps to clone the Eps-A ( m ) 1 gene include the generation of mot1 and ftsh4 mutants and the completion of the T. monococcum physical map to test for the presence of additional candidate genes.
- Published
- 2010
- Full Text
- View/download PDF
43. Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat.
- Author
-
Janda J, Bartos J, Safár J, Kubaláková M, Valárik M, Cíhalíková J, Simková H, Caboche M, Sourdille P, Bernard M, Chalhoub B, and Dolezel J
- Subjects
- Chromosome Mapping, Chromosomes, Artificial, Bacterial, Genome, Plant, Polyploidy, Chromosomes, Plant genetics, Genomic Library, Triticum genetics
- Abstract
The analysis of the hexaploid wheat genome (Triticum aestivum L., 2 n=6 x=42) is hampered by its large size (16,974 Mb/1C) and presence of three homoeologous genomes (A, B and D). One of the possible strategies is a targeted approach based on subgenomic libraries of large DNA inserts. In this work, we purified by flow cytometry a total of 10(7) of three wheat D-genome chromosomes: 1D, 4D and 6D. Chromosomal DNA was partially digested with HindIII and used to prepare a specific bacterial artificial chromosome (BAC) library. The library (designated as TA-subD) consists of 87,168 clones, with an average insert size of 85 kb. Among these clones, 53% had inserts larger than 100 kb, only 29% of inserts being shorter than 75 kb. The coverage was estimated to be 3.4-fold, giving a 96.5% probability of identifying a clone corresponding to any sequence on the three chromosomes. Specificity for chromosomes 1D, 4D and 6D was confirmed after screening the library pools with single-locus microsatellite markers. The screening indicated that the library was not biased and gave an estimated coverage of sixfold. This is the second report on BAC library construction from flow-sorted plant chromosomes, which confirms that dissecting of the complex wheat genome and preparation of subgenomic BAC libraries is possible. Their availability should facilitate the analysis of wheat genome structure and evolution, development of cytogenetic maps, construction of local physical maps and map-based cloning of agronomically important genes.
- Published
- 2004
- Full Text
- View/download PDF
44. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat.
- Author
-
Safár J, Bartos J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tusková R, Cíhalíková J, Vrána J, Simková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Dolezel J, and Chalhoub B
- Subjects
- Chromosome Mapping, Chromosomes, Artificial, Bacterial, Chromosomes, Plant genetics, Cloning, Molecular, Flow Cytometry methods, Gene Library, Genes, Plant genetics, In Situ Hybridization, Fluorescence, Genome, Plant, Triticum genetics
- Abstract
The analysis of the complex genome of common wheat (Triticum aestivum, 2n = 6x = 42, genome formula AABBDD) is hampered by its large size ( approximately 17 000 Mbp) and allohexaploid nature. In order to simplify its analysis, we developed a generic strategy for dissecting such large and complex genomes into individual chromosomes. Chromosome 3B was successfully sorted by flow cytometry and cloned into a bacterial artificial chromosome (BAC), using only 1.8 million chromosomes and an adapted protocol developed for this purpose. The BAC library (designated as TA-3B) consists of 67 968 clones with an average insert size of 103 kb. It represents 6.2 equivalents of chromosome 3B with 100% coverage and 90% specificity as confirmed by genetic markers. This method was validated using other chromosomes and its broad application and usefulness in facilitating wheat genome analysis were demonstrated by target characterization of the chromosome 3B structure through cytogenetic mapping. This report on the successful cloning of flow-sorted chromosomes into BACs marks the integration of flow cytogenetics and genomics and represents a great leap forward in genetics and genomic analysis.
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.