1. Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination
- Author
-
V. V. Shnitov, Dina Yu. Stolyarova, Svyatoslav D. Saveliev, Victor V. Sysoev, Demid A. Kirilenko, Sergei A. Ryzhkov, Maria Brzhezinskaya, M. V. Baidakova, Pavel N. Brunkov, and M. K. Rabchinskii
- Subjects
X-ray absorption spectroscopy ,Materials science ,Nanostructure ,Absorption spectroscopy ,Graphene ,Doping ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,0104 chemical sciences ,law.invention ,X-ray photoelectron spectroscopy ,law ,Surface modification ,General Materials Science ,0210 nano-technology ,Spectroscopy - Abstract
Here, we have thoroughly studied the effect of chemistry of graphene derivatives on the composition of N-species after N-doping with the help of core-level spectroscopy techniques. The modulation of the N-species by tailoring the functionalization and atomic structure of graphene derivatives prior to chemical N-doping is experimentally demonstrated for the first time. The large extent of non-terminated or phenol-functionalized graphene edges is found to facilitate the formation of pyridinic nitrogen with its relative content exceeding 72%. In turn, the predominant decoration by the pyrazolic moieties is shown for the perforated and carboxyl-derived graphene layers. The thermal annealing at moderate temperatures of ca.345 °C is shown to equally readjust the composition of N-species in graphene derivatives regardless of their chemistry, nanostructure, and the initial distribution of the N-species. Further examination of N K-edge X-ray absorption spectra (XAS) pointed out that the oxidation of the graphene layer governs the manifestation of the π∗ resonances and configuration of the σ∗ resonance. As a result, a set of facile methods to synthesize graphene derivatives with the desired type of the embedded nitrogen species for the optoelectronic and catalytic applications are proposed and crucial features of their identification using core-level spectroscopy techniques are emphasized.
- Published
- 2021