1. MINING AND PROCESSING PLANT ACTIVITIES AND THE LEVELS OF BACKGROUND RADIATION IN AN ARCTIC SETTING
- Author
-
A N Nikanov, A B Gudkov, M V Shelkov, O N Popova, F A Shcherbina, and A F Shcherbina
- Subjects
Health (social science) ,Ecology ,Public Health, Environmental and Occupational Health ,General Medicine - Abstract
Aim: To assess background radiation levels in the area adjacent to a mining and processing plant in a Russian Arctic setting. Methods: An equivalent dose rate in μSv / h at an altitude of about 1 m as well as a flux density of alpha and beta radiation from the surface of water, rocks and soil were estimated. The MKS-01A Multirad-M portable spectrometry complex was used for the route radiometric survey to measure the dose rate of gamma radiation and the content of natural radionuclides in soil. Radon level measurements were carried out using an PAA-10 and IZV-3M radiometer aerosols. Result: Soil radioactivity in the swamp tundra varied from 7.03 to 71.06 Bq/kg while in the mountain tundra the corresponding values were from 15.17 to 27.75 Bq/kg. The radiation intensity of the Khibiny surface sediments ranged from 0.12 (soils of wetlands and lowlands) to 0.45 (bedrock, precipitation-scree deposits) μSv/h. On the territory of quarries and industrial sites, as well as in the mountains used for recreational purposes, the background radiation was from 0.21-60.0 μSv/h. Air radioactivity in the basements of buildings was from 17.3 to 57.6 Bq/m3. Conclusions. Our results suggest that the territories of quarries and other industrial sites, as well as mountain areas used for recreational purposes can be classified as areas for persons of category B meaning that a limited part of the population may be exposed to radiation. This does not raise concerns because of limited duration of stay of people in these areas which is is much shorter than the permissible exposure time for these conditions regulated by URB. The radon content and the assessment of the activity of the daughter products of its decay in the basements suggest that the average concentrations do not exceed the limit of 200 Bq/m3. The radiation environment of the study area can be considered as relatively safe.
- Published
- 2019