1. Multi-Level Control System for an Intelligent Robot that is Part of a Group
- Author
-
K. J. Mashkov, K. V. Konovalov, and V. I. Rubtsov
- Subjects
Human-Computer Interaction ,Intelligent robots ,Artificial Intelligence ,Control and Systems Engineering ,Group (mathematics) ,Computer science ,Control system ,Control engineering ,Electrical and Electronic Engineering ,Software ,Computer Science Applications - Abstract
The article is devoted to the application of a group of robotic complexes for military purposes. The current state of control systems of single robotic complexes does not allow solving all the tasks assigned to the robot. The analysis of methods of controlling a group of robots in combat conditions is carried out. The necessity of using a multi-level control system for an intelligent combat robot is justified. A multi-level control system for an intelligent robot is proposed. Such a system assumes the possibility of controlling the robot in one of four modes: remote, supervisory, autonomous and group. Moreover, each robot, depending on the external conditions and its condition, can be in any control mode. The application of the technique is shown by the example of the movement of a group of robots with an interval along the front. The problem of the movement of slave robots behind the leader is considered. When forming the robot control algorithm, the method of finite automata was used. The algorithm controls the movement of the RTK in various operating modes: group control mode and autonomous movement mode. In the group control mode, the task is implemented: movement for the leader. For the state of "Movement in formation", an algorithm for forming the trajectory of the movement of guided robots was implemented. An algorithm for approximating the Bezier curve was used. It allows you to build a trajectory for the slave robot. On the basis of the obtained trajectory, the angular and linear velocity were calculated. In the autonomous control mode, two tasks are solved: moving to a given point and avoiding obstacles. Vector Field Histogram was used as an algorithm for detouring an obstacle, which determines the direction of movement without obstacles. The state of "Movement to a given point" is based on Pure Pursuit as a simple and reliable algorithm for solving such problems. A computer model of the movement of a group of robots was developed. The model is implemented in the MATLAB program using the Simulink and Mobile Robotics Simulation Toolbox libraries. Several different variants of the movement of the RTK group are modeled, which differ from each other in the initial location of the robots and the position of obstacles. The conducted computer simulation showed the efficiency and effectiveness of the proposed method of RTC control.
- Published
- 2021