1. The Solar Orbiter Solar Wind Analyser (SWA) suite
- Author
-
C. Brockley-Blatt, Mark Phillips, G. Dirks, A. Malpus, J. Ford, Michael R. Collier, M. Hailey, C. Loeffler, G. Terrier, S. Myers, Iannis Dandouras, D. Rust, G. Capuano, L. M. Kistler, Gethyn R. Lewis, S. Clemens, R. Baruah, John A. Trevino, R. Ascolese, Jean-André Sauvaud, S. Persyn, K. Ruane, C. Urdiales, E. Penou, G. Davison, Timothy J. Stubbs, A. Barthe, J. Yardley, Vincent Génot, A. Lawrenson, R. Thibodeaux, B. Hancock, Glyn Collinson, Jason A. Gilbert, C. Anekallu, C. Jacquey, Robert F. Wimmer-Schweingruber, I. Čermák, S. Gradone, L. Přech, J. Coker, P. Louarn, V. de Giosa, Berend Winter, Timothy S. Horbury, W. Marty, M. Salatti, Daniel Verscharen, Jim M. Raines, P. Devoto, E. Edlund, C. Brysbaert, M. Johnson, J. Rubiella, T. Hunt, Frederic Allegrini, M. Ferris, Roberto Bruno, Matthieu Berthomier, M. Petiot, Christopher J. Owen, K. L. Arnett, A. Rousseau, D. Davies, V. Arciuli, P. Bland, Peter Wurz, J. W. Thomas, G. Mele, R. Calvanese, G. Watson, F. Monti, C. Bancroft, Dennis J. Chornay, P. Wheeler, Andrew Walsh, Jason L. Stange, K. Al Janabi, Dhiren Kataria, V. Fortunato, Keiichi Ogasawara, A. Spencer, Rossana DeMarco, Susan T. Lepri, C. Amoros, Milan Maksimovic, D. Heirtzler, Stefano Livi, N. André, Antoinette B. Galvin, Mark A. Popecki, Benoit Lavraud, A. Alapide, W. Gibson, Leonardo Amoruso, W. Lockhart, Raffaella D'Amicis, G. Willis, C. Mazelle, F. Marcucci, S. Rogacki, A. Pacros, A. P. Rouillard, F. Leblanc, K. Rees, J.-D. Techer, Javier Rodriguez-Pacheco, I. Fratter, Ali Varsani, I. Zouganelis, M. Orlandi, C. Garat, T. Taylor, Marco Castronuovo, C. Frost, G. Fruit, A. De Los Santos, A. Mayall, M. Reden, Andrew Fazakerley, R. Mathon, I. Phillips, A. Fedorov, T. Nguyen, H. Seran, M. Brysch, R. Darnley, Mark Stakhiv, S. Bordon, Institut de recherche en astrophysique et planétologie (IRAP), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
010504 meteorology & atmospheric sciences ,Analyser ,Astrophysics ,7. Clean energy ,01 natural sciences ,law.invention ,Orbiter ,law ,Sun: particle emission ,0103 physical sciences ,Thermal ,Astrophysics::Solar and Stellar Astrophysics ,Aerospace engineering ,Sun: heliosphere ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Physics ,Spacecraft ,business.industry ,instrumentation: detectors ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astronomy and Astrophysics ,Plasma ,plasmas ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Solar wind ,solar wind ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Physics::Space Physics ,Astrophysical plasma ,Astrophysics::Earth and Planetary Astrophysics ,business ,Heliosphere - Abstract
The Solar Orbiter mission seeks to make connections between the physical processes occurring at the Sun or in the solar corona and the nature of the solar wind created by those processes which is subsequently observed at the spacecraft. The mission also targets physical processes occurring in the solar wind itself during its journey from its source to the spacecraft. To meet the specific mission science goals, Solar Orbiter will be equipped with both remote-sensing and in-situ instruments which will make unprecedented measurements of the solar atmosphere and the inner heliosphere. A crucial set of measurements will be provided by the Solar Wind Analyser (SWA) suite of instruments. This suite consists of an Electron Analyser System (SWA-EAS), a Proton and Alpha particle Sensor (SWA-PAS), and a Heavy Ion Sensor (SWA-HIS) which are jointly served by a central control and data processing unit (SWA-DPU). Together these sensors will measure and categorise the vast majority of thermal and suprathermal ions and electrons in the solar wind and determine the abundances and charge states of the heavy ion populations. The three sensors in the SWA suite are each based on the top hat electrostatic analyser concept, which has been deployed on numerous space plasma missions. The SWA-EAS uses two such heads, each of which have 360° azimuth acceptance angles and ±45° aperture deflection plates. Together these two sensors, which are mounted on the end of the boom, will cover a full sky field-of-view (FoV) (except for blockages by the spacecraft and its appendages) and measure the full 3D velocity distribution function (VDF) of solar wind electrons in the energy range of a few eV to ∼5 keV. The SWA-PAS instrument also uses an electrostatic analyser with a more confined FoV (−24° to +42° × ±22.5° around the expected solar wind arrival direction), which nevertheless is capable of measuring the full 3D VDF of the protons and alpha particles arriving at the instrument in the energy range from 200 eV/q to 20 keV/e. Finally, SWA-HIS measures the composition and 3D VDFs of heavy ions in the bulk solar wind as well as those of the major constituents in the suprathermal energy range and those of pick-up ions. The sensor resolves the full 3D VDFs of the prominent heavy ions at a resolution of 5 min in normal mode and 30 s in burst mode. Additionally, SWA-HIS measures 3D VDFs of alpha particles at a 4 s resolution in burst mode. Measurements are over a FoV of −33° to +66° × ±20° around the expected solar wind arrival direction and at energies up to 80 keV/e. The mass resolution (m/Δm) is > 5. This paper describes how the three SWA scientific sensors, as delivered to the spacecraft, meet or exceed the performance requirements originally set out to achieve the mission’s science goals. We describe the motivation and specific requirements for each of the three sensors within the SWA suite, their expected science results, their main characteristics, and their operation through the central SWA-DPU. We describe the combined data products that we expect to return from the suite and provide to the Solar Orbiter Archive for use in scientific analyses by members of the wider solar and heliospheric communities. These unique data products will help reveal the nature of the solar wind as a function of both heliocentric distance and solar latitude. Indeed, SWA-HIS measurements of solar wind composition will be the first such measurements made in the inner heliosphere. The SWA data are crucial to efforts to link the in situ measurements of the solar wind made at the spacecraft with remote observations of candidate source regions. This is a novel aspect of the mission which will lead to significant advances in our understanding of the mechanisms accelerating and heating the solar wind, driving eruptions and other transient phenomena on the Sun, and controlling the injection, acceleration, and transport of the energetic particles in the heliosphere.
- Published
- 2020