69 results on '"V. A. Poleschuk"'
Search Results
2. Cosmic Ray Study at the Astrophysical Complex TAIGA: Results and Plans
- Author
-
L. A. Kuzmichev, I. I. Astapov, P. A. Bezyazeekov, M. Blank, E. A. Bonvech, A. N. Borodin, M. Brueckner, N. M. Budnev, A. V. Bulan, D. V. Chernov, A. Chiavassa, A. N. Dyachok, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, D. Horns, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, A. A. Lagutin, M. V. Lavrova, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, A. D. Lukanov, D. Lukyantsev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, A. Pan, L. V. Pankov, A. D. Panov, A. A. Petrukhin, D. A. Podgrudkov, V. A. Poleschuk, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, A. Razumov, E. Rjabov, G. I. Rubtsov, Y. I. Sagan, V. S. Samoliga, A. Yu. Sidorenkov, A. A. Silaev, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Y. Suvorkin, L. G. Sveshnikova, V. A. Tabolenko, A. B. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, A. Vaidyanathan, P. A. Volchugov, N. V. Volkov, D. Voronin, R. Wischnewski, I. I. Yashin, A. V. Zagorodnikov, and D. P. Zhurov
- Subjects
Nuclear and High Energy Physics ,Atomic and Molecular Physics, and Optics - Published
- 2021
3. Detecting Gamma Rays with Energies Greater than 3–4 ТeV from the Crab Nebula and Blazar Markarian 421 by Imaging Atmospheric Cherenkov Telescopes in the TAIGA Experiment
- Author
-
L. G. Sveshnikova, I. I. Astapov, P. A. Bezyazeekov, M. Blank, A. N. Borodin, M. Brückner, N. M. Budnev, A. Bulan, A. Vaidyanathan, R. Wischnewski, P. Volchugov, D. Voronin, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryukhin, V. A. Kozhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. Chiavassa, M. Lavrova, A. A. Lagutin, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. Pan, M. I. Panasyuk, L. V. Pankov, A. L. Pakhorukov, A. A. Petrukhin, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, G. I. Rubtsov, E. V. Rjabov, Ya. I. Sagan, V. S. Samoliga, A. Yu. Sidorenkov, A. A. Silaev, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Ya. Suvorkin, V. A. Tabolenko, A. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, D. Horns, and I. I. Yashin
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,01 natural sciences - Published
- 2021
4. First Results from Operating a Prototype Wide-Angle Telescope for the TAIGA Installation
- Author
-
D. A. Podgrudkov, E. A. Bonvech, I. V. Vaiman, D. V. Chernov, I. I. Astapov, P. A. Bezyazeekov, M. Blank, A. N. Borodin, M. Brückner, N. M. Budnev, A. V. Bulan, A. Vaidyanathan, R. Wischnewski, P. A. Volchugov, D. M. Voronin, A. R. Gafarov, O. A. Gress, T. I. Gress, O. G. Grishin, A. Yu. Garmashi, V. M. Grebenyuk, A. V. Grinyuk, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. L. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. Chiavassa, M. Lavrova, A. A. Lagutin, Yu. E. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, A. Pan, M. I. Panasyuk, L. V. Pankov, A. A. Petrukhin, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, G. I. Rubtsov, E. V. Ryabov, Ya. I. Sagan, V. S. Samoliga, A. A. Silaev, A. Yu. Sidorenkov, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, L. G. Sveshnikova, Ya. V. Suvorkin, V. A. Tabolenko, A. V. Tanaev, B. A. Tarashansky, M. Yu. Ternovoy, L. G. Tkachev, M. Tluczykont, N. A. Ushakov, D. Horns, and I. V. Yashin
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,01 natural sciences - Published
- 2021
5. Status of the TAIGA Experiment: From Cosmic-Ray Physics to Gamma Astronomy in Tunka Valley
- Author
-
Dmitry Chernov, A. V. Skurikhin, Andrey Sokolov, M. Slunecka, Grigory Rubtsov, N. N. Kalmykov, B. A. Tarashchansky, D. A. Podgrudkov, V. A. Poleschuk, Y. Suvorkin, P. Volchugov, A. L. Pakhorukov, Dieter Horns, N. M. Budnev, A. Tanaev, Roman Raikin, A. N. Dyachok, M. Tluczykont, A. A. Grinyuk, R. R. Mirgazov, A. Haungs, Evgeny Postnikov, N. B. Lubsandorzhiev, A. Pan, T. Marshalkina, Oleg Fedorov, V. Samoliga, V. S. Ptuskin, M. Kleifges, A. Chiavassa, Y. Sagan, R. Mirzoyan, A. Porelli, M. Brueckner, N. Ushakov, T. I. Gress, A. Borodin, V. Lenok, Aleksandr Gafarov, R. Togoo, A. Garmash, Dmitry Zhurov, A. A. Silaev, D. Kostyunin, L. G. Tkachev, A. V. Zagorodnikov, E. A. Osipova, V. Kiryuhin, E. V. Ryabov, Pavel Bezyazeekov, O. G. Grishin, D. Shipilov, A. Ivanova, E. Popova, O. A. Gress, L. G. Sveshnikova, A. Vaidyanathan, L. V. Pankov, B. K. Lubsandorzhiev, V. A. Kozhin, V. V. Kindin, M. Ternovoy, L. A. Kuzmichev, V. M. Grebenyuk, I. I. Astapov, R. Wischnewski, Mikhail Panasyuk, Frank G. Schröder, A. Pushnin, A. Bulan, A. Bonvech, K. G. Kompaniets, D. Voronin, V.A. Tabolenko, E. A. Kravchenko, D. Chernykh, E. E. Korosteleva, S. Malakhov, R. P. Kokoulin, A. A. Petrukhin, Yulia Kazarina, Ig. Yashin, Yu. Lemeshev, V. V. Prosin, Anatoly Lagutin, T. Huege, R. D. Monkhoev, Alexander Kryukov, and A. Sidorenkov
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Taiga ,Astronomy ,Cosmic ray ,Radiation ,010306 general physics ,Hybrid approach ,01 natural sciences ,Atomic and Molecular Physics, and Optics - Abstract
The importance and advantages of the hybrid approach developed within the TAIGA project for studying the high-energy section of the spectrum of gamma radiation in the Universe are discussed. The pilot complex of the TAIGA gamma observatory with an area of 1 km $${}^{2}$$ is briefly described along with the lines of its development, and the first results obtained on this basis are given.
- Published
- 2020
6. Gamma/Hadron Separation for a Ground Based IACT in Experiment TAIGA Using Machine Learning Methods
- Author
-
Maria Vasyutina, L. Sveshnikova, I. I. Astapov, P. A. Bezyazeekov, M. Blank, E. A. Bonvech, A. N. Borodin, M. Brueckner, N. M. Budnev, A. V. Bulan, D. V. Chernov, A. Chiavassa, A. N. Dyachok, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, Dieter Horns, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. A. Lagutin, M. V. Lavrova, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, A. D. Lukanov, D. Lukyantsev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, L. A. Panasenko, A. Pan, L. V. Pankov, A. D. Panov, A. A. Petrukhin, D. A. Podgrudkov, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin 𝑗, A. Razumov, E. Rjabov, G. I. Rubtsov, Y. I. Sagan, V. S. Samoliga, Andrei Sidorenkov, A. A. Silaev, A. A. Silaev jr, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Y. Suvorkin, V. A. Tabolenko, A. B. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, A. Vaidyanathan, P. A. Volchugov, N. V. Volkov, D. Voronin, R. Wischnewski, I. I. Yashin, A. V. Zagorodnikov, and D. P. Zhurov
- Subjects
Computer science ,Hadron ,Taiga ,Separation (aeronautics) ,IACT ,Random forest ,Remote sensing - Published
- 2021
7. Depth of the Maximum of Extensive Air Showers (EASes) and the Mean Mass Composition of Primary Cosmic Rays in the 1015–1018 eV Range of Energies, According to Data from the TUNKA-133 and TAIGA-HiSCORE Arrays for Detecting EAS Cherenkov Light in the Tunkinsk Valley
- Author
-
V. V. Prosin, I. I. Astapov, P. A. Bezyazeekov, A. N. Borodin, M. Brückner, N. M. Budnev, A. Bulan, A. Vaidyanathan, R. Wischnewski, P. Volchugov, D. Voronin, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, V. A. Kozhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. Chiavassa, M. Lavrova, A. A. Lagutin, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. Pan, M. I. Panasyuk, L. V. Pankov, A. L. Pakhorukov, A. A. Petrukhin, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, G. I. Rubtsov, E. V. Ryabov, Ya. I. Sagan, V. S. Samoliga, L. G. Sveshnikova, A. Yu. Sidorenkov, A. A. Silaev, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Y. Suvorkin, V. A. Tabolenko, A. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, D. Horns, and I. I. Yashin
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,01 natural sciences - Published
- 2021
8. The problem of translating Japanese onomatopoetic vocabulary into Russian by the Kenji Miyazawa’s work «雪 渡 り» («Walking in the Snow»)
- Author
-
A. Y. Ignatenko and V. V. Poleschuk
- Subjects
Vocabulary ,History ,Work (electrical) ,media_common.quotation_subject ,Onomatopoeia ,Snow ,Linguistics ,media_common - Abstract
Темой исследования является анализ произведения Кэндзи Миядзава «Прогулки по снегу» с целью выявления проблемы перевода японской ономатопоэтической лексики на русский язык. В ходе работы нами использовался описательный метод, метод сплошной выборки, сравнительный метод, контекстуальный анализ. Полученные результаты исследования могут быть использованы для дальнейших научных разработок по данной теме.
- Published
- 2021
9. TAIGA-IACT pointing control and monitoring software status
- Author
-
Dmitriy Zhurov, O. A. Gress, D. S. Lukyantsev, I. I. Astapov, A. K. Awad, P. A. Bezyazeekov, M. Blank, E. A. Bonvech, A. N. Borodin, A. V. Bulan, M. Brueckner, N. M. Budnev, A. Chiavassa, D. V. Chernov, A. N. Dyachok, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, E. Gress, T. I. Gress, O. G. Grishin, A. A. Grinyuk, Dieter Horns, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. A. Lagutin, M. Lavrova, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, A. D. Lukanov, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, A. Pan, L. V. Pankov, A. D. Panov, A. A. Petrukhin, D. A. Podgrudkov, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, A. Y. Razumov, G. I. Rubtsov, E. V. Ryabov, Y. I. Sagan, V. S. Samoliga, A. A. Silaev, A. A. junior Silaev, Andrei Sidorenkov, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, L. G. Sveshnikova, V. A. Tabolenko, B. A. Tarashansky, L. G. Tkachev, R. Togoo, M. Tluczykont, N. Ushakov, A. Vaidyanathan, P. A. Volchugov, N. V. Volkov, D. Voronin, R. Wischnewski, A. V. Zagorodnikov, and I. I. Yashin
- Published
- 2021
10. TAIGA - an advanced hybrid detector complex for astroparticle physics, cosmic ray physics and gamma-ray astronomy
- Author
-
V. P. Sulakov, E. A. Kravchenko, Roman Raikin, A. A. Grinyuk, A. Chiavassa, E. E. Korosteleva, BayarJon Paul Lubsandorzhiev, E. Popova, R. R. Mirgazov, L. G. Sveshnikova, S. Malakhov, R. P. Kokoulin, R. Togoo, A. Petrukhin, Yu. Lemeshev, A.V. Igoshin, S. Kiryuhin, V. V. Prosin, A. Porelli, A. Borodin, M. Blank, A. Ivanova, M. Tluczykont, A. N. Dyachok, V.A. Tabolenko, L. G. Tkachev, V. Samoliga, V. A. Poleschuk, R. Wischnewski, A. Bulan, E. A. Osipova, N. Ushakov, Pavel Bezyazeekov, Evgeny Postnikov, D. Zhurov, L. V. Pankov, A. Garmash, M. Ternovoy, D. Voronin, O. A. Gress, T. I. Gress, V. V. Kindin, I. I. Astapov, V. A. Kozhin, K. G. Kompaniets, Andrey Sokolov, E. V. Ryabov, R. Mirzoyan, Grigory Rubtsov, N. N. Kalmykov, O. Grishin, M. Popesku, D. Lukyantsev, V. Slunecka, A. V. Skurikhin, Y. Sagan, Dieter Horns, V. S. Ptuskin, P. Volchugov, A. L. Pakhorukov, A. Tanaev, A. Pushnin, N. B. Lubsandorzhiev, Aleksandr Gafarov, A. A. Silaev, A. V. Zagorodnikov, N. M. Budnev, Y. Suvorkin, E. Gress, A. Zhaglova, L. A. Kuzmichev, V. M. Grebenyuk, B. A. Tarashchansky, A. Vaidyanathan, I. Poddubnyi, Anatoly Lagutin, V. Ponomareva, M. Brückner, R. D. Monkhoev, B. M. Sabirov, I. I. Yashin, Alexander Kryukov, and A. Sidorenkov
- Subjects
Astroparticle physics ,Physics ,Observatory ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Electron ,Gamma-ray astronomy ,Cherenkov radiation - Abstract
The physical motivations and performance of the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV and astroparticle physics. The pilot TAIGA complex locates in the Tunka valley, ~50 km West from the southern tip of the lake Baikal. It includes integrating air Cherenkov TAIGA-HiSCORE array with 120 wide-angle optical stations distributed over on area 1 square kilometer about and three the 4-m class Imaging Atmospheric Cherenkov Telescopes of the TAIGA-IACT array. The latter array has a shape of triangle with side lengths of about 300m, 400m and 500m. The expected integral sensitivity of the 1 km2 TAIGA detector will be about 2,5 × 10-13 TeV cm-2 sec-1 for detection of E ≥ 100 TeV gamma-rays in 300 hours of source observations. The combination of the wide angle Cherenkov array and IACTs could offer a cost effective-way to build a really large (up to 10 km2) array for very high energy gamma-ray astronomy. The reconstruction of a given EAS energy, incoming direction and the core position, based on the TAIGA-HiSCORE data, allows one to increase the distance between the relatively expensive IACTs up to 600-800 m. These, together with the surface and underground electron/Muon detectors will be used for selection of gamma-ray induced EAS. Present status of the project, together with the current array description and the first experimental results and plans for the future will be reported.
- Published
- 2021
11. First Season of Operation of the TAIGA Hybrid Cherenkov Array
- Author
-
M. Brueckner, A. Pakhorukov, E. A. Osipova, N. B. Lubsandorzhiev, L. G. Tkachev, Yu. Lemeshev, A. Ivanova, Y. Sagan, A. Yu. Garmash, Pavel Bezyazeekov, V. Boreyko, V. A. Poleschuk, S. Kiryuhin, A. Pushnin, A. V. Skurikhin, M. Kunnas, L. A. Kuzmichev, C. Spiering, V. M. Grebenyuk, Evgeny Postnikov, M. Tluczykont, N. V. Gorbunov, Grigory Rubtsov, N. N. Kalmykov, K. G. Kompaniets, Anatoly Lagutin, E. A. Kravchenko, Mikhail Panasyuk, Dieter Horns, O. A. Gress, A. A. Petrukhin, E. E. Korosteleva, A. V. Tkachenko, V. A. Kozhin, Yulia Kazarina, A. Yu. Sidorenkov, V. V. Kindin, Aleksey Zagorodnikov, R. P. Kokoulin, A. Chiavassa, V. Prosin, V. Samoliga, B.A. Tarashansky, Dmitry Zhurov, N. M. Budnev, R. Mirzoyan, M. Slunecka, B. M. Sabirov, Bayarto Lubsandorzhiev, I. I. Yashin, P. Kirilenko, Andrey Sokolov, V. S. Ptuskin, V.A. Tabolenko, I. I. Astapov, L. G. Sveshnikova, Yu. A. Semeney, V. V. Lenok, A. Porelli, O. G. Grishin, R. R. Mirgazov, Oleg Fedorov, A. Borodin, R. Wischnewski, Evgenii V Rjabov, Aleksandr Gafarov, A. A. Silaev, R. D. Monkhoev, T. I. Gress, Valery Zurbanov, Roman Raikin, E.G. Popova, A. A. Grinyuk, L. V. Pankov, A. N. Dyachok, and M. Popescu
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,General Physics and Astronomy ,Astronomy ,Cosmic ray ,IACT ,Radiation ,law.invention ,Telescope ,law ,Observatory ,Cherenkov radiation - Abstract
Work is currently under way in the Tunka Valley, 50 km from Lake Baikal, to create the TAIGA gamma observatory for studying gamma radiation and cosmic ray fluxes in the 1013–1018 eV range of energies. To detect gamma rays with energies above tens of TeV, a hybrid method of detecting showers is implemented. It is based on data obtained by the TAIGA Imaging Atmospheric Cherenkov Telescope (IACT) and the wide-angle TAIGA-HiSCORE array. The preliminary results from processing the telescope’s data for the low-energy region (>2–3 TeV) are presented. Joint events with energy more than 50 TeV are analyzed and compared to Monte Carlo calculations.
- Published
- 2019
12. Monte Carlo Simulation of the TAIGA Experiment
- Author
-
R. D. Monkhoev, T. I. Gress, Y. Sagan, R. R. Mirgazov, L. A. Kuzmichev, V. M. Grebenyuk, Oleg Fedorov, M. Brueckner, N. B. Lubsandorzhiev, A. V. Skurikhin, A. Borodin, A. Ivanova, Yu. Lemeshev, E.G. Popova, V.A. Tabolenko, Dmitry Zhurov, B.A. Tarashansky, S. Kiryuhin, A. V. Tkachenko, Mikhail Panasyuk, Dieter Horns, M. Tluczykont, V. S. Ptuskin, A. Pushnin, Roman Raikin, O. G. Grishin, Anatoly Lagutin, A. Chiavassa, A. A. Petrukhin, R. Mirzoyan, V. Prosin, Evgeny Postnikov, Valery Zurbanov, C. Spiering, A. A. Grinyuk, Yulia Kazarina, M. Kunnas, O. A. Gress, L. G. Sveshnikova, A. Pakhorukov, R. Wischnewski, L. G. Tkachev, A. N. Dyachok, V. A. Poleschuk, M. Slunecka, Bayarto Lubsandorzhiev, V. A. Kozhin, Andrey Sokolov, I. I. Astapov, M. Popescu, A. Yu. Garmash, E. A. Kravchenko, Evgenii V Rjabov, B. M. Sabirov, E. E. Korosteleva, V. V. Kindin, I. I. Yashin, Grigory Rubtsov, N. N. Kalmykov, R. P. Kokoulin, L. V. Pankov, N. M. Budnev, P. Kirilenko, V. V. Lenok, A. Porelli, Yu. A. Semeney, V. Samoliga, E. A. Osipova, Pavel Bezyazeekov, V. Boreyko, N. V. Gorbunov, Aleksandr Gafarov, A. A. Silaev, Aleksey Zagorodnikov, K. G. Kompaniets, and A. Yu. Sidorenkov
- Subjects
010302 applied physics ,Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Cosmic ray ,01 natural sciences ,Software ,Air shower ,Observatory ,0103 physical sciences ,business ,Energy (signal processing) ,Cherenkov radiation ,Remote sensing - Abstract
The TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) experiment aims at observing gamma-rays in the energy range from 1 TeV to several 100 TeV. The operation of the observatory is based on a new hybrid approach that combines imaging air Cherenkov telescopes (IACTs) and wide-angle Cherenkov detectors (TAIGA-HiSCORE) for measuring times of extensive air shower (EAS) light front arrival. Monte Carlo simulations are compared to real data to determine the performance of the detector setup. Dedicated software and algorithms are described, model parameters are given, and an overview of the current status of model-based performance studies is presented.
- Published
- 2019
13. TAIGA: A Complex of Hybrid Systems of Cooperating Detectors for Gamma Astronomy and Cosmic Ray Physics in the Tunka Valley
- Author
-
Evgeny Postnikov, Roman Raikin, O. A. Gress, A. A. Grinyuk, V. A. Kozhin, V. V. Kindin, V. Samoliga, V. A. Poleschuk, M. Slunecka, Bayarto Lubsandorzhiev, A. Chiavassa, R. R. Mirgazov, V. S. Ptuskin, R. Mirzoyan, A. Yu. Garmash, V. Prosin, L. A. Kuzmichev, V. M. Grebenyuk, Anatoly Lagutin, Oleg Fedorov, M. Kunnas, L. V. Pankov, E. A. Osipova, Pavel Bezyazeekov, A. A. Petrukhin, Aleksandr Gafarov, Mihai Popescu, R. Wischnewski, A. A. Silaev, M. Tluczykont, A. V. Skurikhin, A. Borodin, Mikhail Panasyuk, R. D. Monkhoev, T. I. Gress, Aleksey Zagorodnikov, A. V. Tkachenko, Dieter Horns, N. B. Lubsandorzhiev, N. V. Gorbunov, Dmitry Zhurov, A. Ivanova, L. G. Sveshnikova, A. Tanaev, I. I. Yashin, N. I. Karpov, E.G. Popova, O. G. Grishin, A. N. Dyachok, R. Nakhtigal, A. Pakhorukov, L. G. Tkachev, V.A. Tabolenko, Y. Sagan, K. G. Kompaniets, A. Porelli, Valery Zurbanov, A. Pushnin, E. A. Kravchenko, A. Yu. Sidorenkov, E. E. Korosteleva, S. Kiryuhin, R. P. Kokoulin, V. P. Sulakov, B.A. Tarashansky, Y. Kazarina, P. Kirilenko, Andrey Sokolov, N. M. Budnev, V. V. Lenok, Grigory Rubtsov, N. N. Kalmykov, C. Spiering, and I. I. Astapov
- Subjects
010302 applied physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Detector ,Taiga ,Gamma ray detectors ,General Physics and Astronomy ,Astronomy ,Cosmic ray ,Radiation ,01 natural sciences - Abstract
The relevance and benefits of the new TAIGA gamma observatory complex in the Tunka Valley (50 km from Lake Baikal) are discussed. The main aim of the TAIGA installation is to study high-energy gamma radiation and search for cosmic pevatrons. The first series of gamma stations was commissioned in 2019 and covers an area of 1 km2. Its expected integral gamma radiation sensitivity at an energy of 100 TeV over 300 h of source monitoring is (2–5) × 10−13 TeV cm−2 s−1. It is planned to expand the effective area of TAIGA gamma observation to 10 km2 in the future.
- Published
- 2019
14. Energy Spectrum of Primary Cosmic Rays, According to TUNKA-133 and TAIGA-HiSCORE EAS Cherenkov Light Data
- Author
-
Evgeny Postnikov, Yu. Lemeshev, Mihai Popescu, Roman Raikin, M. Slunecka, Bayarto Lubsandorzhiev, O. G. Grishin, S. Kiryuhin, K. G. Kompaniets, A. A. Grinyuk, E. A. Osipova, L. A. Kuzmichev, V. M. Grebenyuk, Pavel Bezyazeekov, V. Boreyko, A. V. Tkachenko, Dmitry Zhurov, L. V. Pankov, Andrey Sokolov, N. V. Gorbunov, A. Chiavassa, V. Prosin, L. G. Sveshnikova, M. Kunnas, Anatoly Lagutin, A. Pakhorukov, L. G. Tkachev, N. M. Budnev, A. Yu. Sidorenkov, A. A. Petrukhin, V. Samoliga, Aleksey Zagorodnikov, R. Wischnewski, R. R. Mirgazov, V. A. Poleschuk, A. Pushnin, E.G. Popova, Oleg Fedorov, Valery Zurbanov, Aleksandr Gafarov, B. M. Sabirov, A. V. Skurikhin, A. A. Silaev, A. Borodin, V.A. Tabolenko, P. Kirilenko, Evgenii V Rjabov, I. I. Yashin, Y. Kazarina, A. Yu. Garmash, I. I. Astapov, R. D. Monkhoev, T. I. Gress, Dieter Horns, A. N. Dyachok, M. Tluczykont, Grigory Rubtsov, N. N. Kalmykov, N. B. Lubsandorzhiev, C. Spiering, M. Brueckner, V. S. Ptuskin, A. Ivanova, Yu. A. Semeney, O. A. Gress, V. A. Kozhin, V. V. Kindin, Y. Sagan, V. V. Lenok, A. Porelli, E. A. Kravchenko, E. E. Korosteleva, R. P. Kokoulin, B.A. Tarashansky, Mikhail Panasyuk, and R. Mirzoyan
- Subjects
010302 applied physics ,Physics ,Range (particle radiation) ,010308 nuclear & particles physics ,Hadron ,General Physics and Astronomy ,Flux ,Cosmic ray ,01 natural sciences ,Spectral line ,Nuclear physics ,Primary (astronomy) ,0103 physical sciences ,Energy spectrum ,Cherenkov radiation - Abstract
The Tunka-133 Cherenkov complex for recording extensive air showers (EAS) collected data over seven winters from 2009 to 2017. The differential energy spectra of all particles was acquired in the 6 × 1015–3 × 1018 eV range of energies over 2175 h. The TAIGA-HiSCORE complex is continually being expanded and upgraded. Data acquired by 30 first-line stations over 35 days during the period 2017–2018 is analyzed in this work. As at the Tunka-133 setup, the primary particle energies above 1015 eV are measured using the density of the Cherenkov light flux at a distance of 200 m from a shower’s axis. Data on lower energies are collected by determining the energy of the light flux near a shower’s axis. This results in a spectrum of 2 × 1014–1017 eV. The combined spectrum for the two systems covers a range of 2 × 1014–2 × 1018 eV.
- Published
- 2019
15. Application of New Approximations of the Lateral Distribution of EAS Cherenkov Light in the Atmosphere
- Author
-
R. R. Mirgazov, V. A. Poleschuk, N. B. Lubsandorzhiev, Oleg Fedorov, A. Pakhorukov, L. G. Tkachev, Evgeny Postnikov, A. V. Tkachenko, M. Slunecka, Bayarto Lubsandorzhiev, A. Borodin, Andrey Sokolov, E.G. Popova, O. A. Gress, L. G. Sveshnikova, Y. Sagan, R. D. Monkhoev, T. I. Gress, E. A. Osipova, V. V. Lenok, A. N. Dyachok, P. S. Kirilenko, O. G. Grishin, Pavel Bezyazeekov, V. Boreyko, M. Tluczykont, V. A. Kozhin, V. V. Kindin, K. G. Kompaniets, A. V. Skurikhin, R. Nachtigall, A. Porelli, R. Mirzoyan, A. Pushnin, L. V. Pankov, Valery Zurbanov, N. V. Gorbunov, B.A. Tarashansky, A. A. Lagutin, Roman Raikin, Aleksandr Gafarov, I. I. Yashin, V. P. Sulakov, M. Popesku, Dieter Horns, A. Sidorenkov, A. A. Grinyuk, A. A. Silaev, Yu. A. Semeney, V. Samoliga, C. Spiering, Mikhail Panasyuk, Aleksey Zagorodnikov, M. Kunnas, V. S. Ptuskin, A. Chiavassa, E. A. Kravchenko, V. Prosin, A. Ivanova, N. I. Karpov, R. Wischnewski, L. A. Kuzmichev, V. M. Grebenyuk, A. A. Petrukhin, A. Sh. M. Elshoukrofy, Yulia Kazarina, N. M. Budnev, S. Kiryuhin, V.A. Tabolenko, E. E. Korosteleva, A. Garmash, Hussein A. Motaweh, R. P. Kokoulin, I. I. Astapov, Grigory Rubtsov, and N. N. Kalmykov
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Probability density function ,01 natural sciences ,Electromagnetic radiation ,Atomic and Molecular Physics, and Optics ,Computational physics ,Massless particle ,Distribution function ,0103 physical sciences ,Range (statistics) ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
A new knee-like approximation of the lateral distribution function (LDF) of EAS Cherenkov light in the 30–3000 TeV energy range was proposed and tested with simulated showers in our earlier studies. This approximation fits the LDFs of individual showers accurately for all types of primary particles gamma-rays, protons, and nuclei) and is suitable for reconstructing the shower core, determining the energy, and separating gamma-induced showers from hadron-induced ones. In the present study, the knee-like fitting function is used to determine the parameters of real showers detected by TAIGA-HiSCORE. It is demonstrated that this approximation characterizes properly all types of individual LDFs of experimental events in the 300–1000 TeV range. The accuracy of fit is governed by fluctuations intrinsic to the process of measurement of the Cherenkov photon density. The probability density function of these fluctuations was reconstructed and introduced into simulations. Certain useful methodical applications of the knee-like approximation are con-sidered, and the possibility of shower sorting into nuclei groups is examined. The extensive statistical coverage and detailed LDF measurement data of HiSCORE have provided the first opportunity to examine in depth the LDF of Cherenkov radiation in the 300–1000 TeV range.
- Published
- 2018
16. Optimization of electromagnetic and hadronic extensive air shower identification using the muon detectors of the TAIGA experiment
- Author
-
K. G. Kompaniets, A. Chiavassa, V.A. Tabolenko, Valery Zurbanov, R. R. Mirgazov, E. A. Kravchenko, E. E. Korosteleva, R. P. Kokoulin, M. Kunnas, O. Grishin, Anatoly Lagutin, T. I. Gress, Oleg Fedorov, D. Voronin, Aleksandr Gafarov, L. G. Tkachev, A. V. Skurikhin, I. I. Astapov, R. Nachtigall, V. V. Lenok, A. A. Silaev, A. V. Zagorodnikov, A. Borodin, Evgeny Postnikov, B.A. Tarashansky, E. A. Osipova, V. Slunecka, A. Krykov, V. S. Ptuskin, A. Silaev junior, E.G. Popova, Dieter Horns, A. Porelli, R. D. Monkhoev, B. M. Sabirov, Pavel Bezyazeekov, V. Boreyko, I. I. Yashin, A. L. Pakhorukov, Mihai Popescu, R. Wischnewski, V. A. Poleschuk, D. Zhurov, M. Brueckner, A. Sidorenkov, L. A. Kuzmichev, V. M. Grebenyuk, A. Garmash, Yu. A. Semeney, Grigory Rubtsov, N. N. Kalmykov, A. Ivanova, Bayarto Lubsandorzhiev, N. V. Gorbunov, Evgenii V Rjabov, A. V. Tkachenko, Yu. Lemeshev, P. Kirilenko, Roman Raikin, N. M. Budnev, V. Samoliga, A. Vaidyanathan, S. Kiryuhin, V. V. Prosin, A. A. Grinyuk, O. A. Gress, C. Spiering, V. A. Kozhin, V. V. Kindin, A. A. Petrukhin, Y. Sagan, M. Tluczykont, Yulia Kazarina, L. G. Sveshnikova, Andrey Sokolov, A. Pushnin, N. B. Lubsandorzhiev, N. Ushakov, L. V. Pankov, A. N. Dyachok, Mikhail Panasyuk, and R. Mirzoyan
- Subjects
Physics ,Nuclear and High Energy Physics ,Range (particle radiation) ,TAIGA ,Muon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Scintillator ,Wavelength shifter ,Nuclear physics ,Air shower ,Scintillation detectors ,High Energy Physics::Experiment ,Instrumentation - Abstract
The TAIGA experiment in the Tunka valley near Lake Baikal is planning an extension with new TAIGA-Muon scintillation detector stations. The main purpose of TAIGA is gamma-ray astronomy in the TeV to PeV energy range and cosmic ray physics. The purpose of the Taiga-Muon detectors is to measure the muon component of air showers for improving cosmic ray composition measurements as well as gamma–hadron separation above 100 TeV. Monte Carlo simulations of the experiment are done with the software packages CORSIKA and GEANT4. Extensive air showers of primary particles in the energy range 100–3000 TeV are created with CORSIKA. The trigger efficiency is calculated and used for optimization. The suppression factor of hadronic showers versus electromagnetic showers is studied, leading to an optimum depth of soil absorber (2 m), at the lowest energy range. Data on the identification efficiency for primary gamma-quanta and proton events are presented as well as the suppression factor.
- Published
- 2020
17. Cherenkov EAS arrays in the Tunka astrophysical center: From Tunka-133 to the TAIGA gamma and cosmic ray hybrid detector
- Author
-
R. R. Mirgazov, A. Chiavassa, V. Prosin, Oleg Fedorov, A. Borodin, L. G. Sveshnikova, A. V. Skurikhin, Evgeny Postnikov, E.G. Popova, O. G. Grishin, Dieter Horns, Martin Tluczykont, M. Slunecka, D. Zhurov, Bayarto Lubsandorzhiev, V.A. Tabolenko, A. V. Tkachenko, N. B. Lubsandorzhiev, A. Grinyuk, E. A. Kravchenko, V. Samoliga, E. A. Osipova, K. G. Kompaniets, Razmik Mirzoyan, E. E. Korosteleva, V. Kiryuhin, Pavel Bezyazeekov, Alexander Kryukov, A. Sidorenkov, A. Garmash, Valery Zurbanov, Aleksandr Gafarov, R. P. Kokoulin, Grigory Rubtsov, N. N. Kalmykov, A. A. Silaev, A. Pan, A. A. Petrukhin, Aleksey Zagorodnikov, M. Brückner, R. D. Monkhoev, T. I. Gress, A. Pushnin, Anatoly Lagutin, D. Voronin, E. V. Ryabov, Victor Grebenyuk, L. Tkachev, A. Pakharukov, I. I. Astapov, Roman Raikin, Ralf Wischnewski, L. A. Kuzmichev, V. V. Lenok, A. Porelli, Yu. A. Semeney, P. Kirilenko, A. N. Dyachok, Ch. Spiering, N. Ushakov, L. V. Pankov, Y. Sagan, I. V. Yashin, M. Popesku, V. S. Ptuskin, O. A. Gress, V. A. Kozhin, V. V. Kindin, V. A. Poleschuk, Mikhail Panasyuk, Y. Kazarina, B.A. Tarashansky, Andrey Sokolov, and N. M. Budnev
- Subjects
Physics ,Nuclear and High Energy Physics ,Gamma-ray astronomy ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Aperture ,Cosmic rays ,EAS Cherenkov light array ,Energy spectrum ,IACT ,Detector ,Gamma ray ,Astronomy ,Cosmic ray ,01 natural sciences ,7. Clean energy ,13. Climate action ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation ,Cherenkov radiation - Abstract
One of the most informative methods of cosmic ray studies is the detection of Cherenkov light from extensive air showers (EAS). The primary energy reconstruction is possible by using the Earth’s atmosphere as a huge calorimeter . The EAS Cherenkov light array Tunka-133, with ∼ 3 km 2 geometrical area, is taking data since 2009. Tunka-133 is located in the Tunka Astrophysical Center at ∼ 50 km west of Lake Baikal. This array allows us to perform a detailed study of the energy spectrum and the mass composition in the energy range from 6 ⋅ 1 0 15 eV to 1 0 18 eV . Most of the ongoing efforts are focused on the construction of the first stage of the detector TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy). The latter is designed for the study of gamma rays and charged cosmic rays in the energy range of 1 0 13 eV – 1 0 18 eV . The TAIGA prototype will consist of ∼ 100 wide angle timing Cherenkov stations (TAIGA-HiSCORE) and three IACTs deployed over an area of ∼ 1 km 2 . The installation of the array is planned to be finished in 2019 while the data-taking can start already during the commissioning phase. The joint reconstruction of energy, direction, and core position of the imaging and non-imaging detectors will allow us to increase the distance between the IACTs up to 800 m, therefore providing a low-cost, highly sensitive detector. The relatively low cost together with the high sensitivity for energies ≥ 30–50 TeV make this pioneering technique very attractive for exploring galactic PeVatrons and cosmic rays. In addition to the Cherenkov light detectors we intend to deploy surface and underground muon detectors over an area of 1 km 2 with a total area of about 1000 m 2 . The results of the first season of coincident operation of the first ∼ 4 m diameter IACT with an aperture of ∼ 10°with 30 stations of TAIGA-HiSCORE will be presented.
- Published
- 2020
18. The TAIGA Experiment: From Cosmic Ray Physics to Gamma Astronomy in the Tunka Valley
- Author
-
L. V. Pankov, Evgeny Postnikov, E. A. Osipova, Yu. Lemeshev, V. S. Ptuskin, A. Pushnin, Pavel Bezyazeekov, V.A. Tabolenko, S. Kiryuhin, L. A. Kuzmichev, V. M. Grebenyuk, Yu. A. Semeney, V. Prosin, M. Slunecka, Bayarto Lubsandorzhiev, B.A. Tarashansky, V. A. Poleschuk, Mikhail Panasyuk, E. I. Kravchenko, N. B. Lubsandorzhiev, N. V. Gorbunov, K. G. Kompaniets, Grigory Rubtsov, N. N. Kalmykov, P. Kirilenko, E. E. Korosteleva, Dmitriy Kostunin, R. Mirzoyan, O. A. Gress, R. P. Kokoulin, A. Pakhorukov, Y. Kazarina, L. G. Tkachev, V. A. Kozhin, A. A. Petrukhin, V. V. Kindin, V. V. Lenok, E.G. Popova, V. Samoliga, A. Ivanova, A. Yu. Sidorenkov, N. M. Budnev, Aleksey Zagorodnikov, A. O. Skurikhin, Andrey Sokolov, I. I. Astapov, A. A. Grinyuk, Y. Sagan, A. V. Boreyko, A. N. Dyachok, L. G. Sveshnikova, A. Yu. Garmash, Dmitry Zhurov, O. G. Grishin, R. D. Monkhoev, T. I. Gress, A. V. Tkachenko, E. V. Ryabov, Aleksandr Gafarov, A. A. Silaev, R. R. Mirgazov, Valery Zurbanov, Oleg Fedorov, A. Borodin, B. M. Sabirov, and I. I. Yashin
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Electron ,Radiation ,01 natural sciences ,Observatory ,0103 physical sciences ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
The article presents the relevance and advantages of the new gamma observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy), which is being constructed in the Tunka Valley 50 km from Lake Baikal. Various detectors of the six TAIGA gamma observatory arrays register the Cherenkov and radio radiation, as well as the electron and muon components of EAS. The primary objective of the TAIGA gamma observatory is to study the high-energy part of the gamma-ray spectrum, in particular, in order to search for Galactic PeVatrons. The energy, direction, and position of the EAS axis are reconstructed in the observatory based on the data of the wide-angle Cherenkov detectors of the TAIGA-HiSCORE experiment. Taking into account this information, the gamma quanta are distinguished from the hadron background using the data obtained by the muon detectors and telescopes that register the EAS image in the Cherenkov light. In this hybrid mode of operation, the atmospheric Cherenkov telescopes can operate in the mono-mode, and the distance between them can be increased to 800–1000 m, which makes it possible to construct an array with an area of 5 km2 and more at relatively low cost and in a short time. By 2019, the first stage of the gamma observatory with an area of 1 km2 will be constructed; its expected integral sensitivity for detecting the gamma radiation with an energy of 100 TeV at observation of the source for 300 hours will be approximately $$2 \times 5$$ 10–13 TeV cm–2s–1.
- Published
- 2018
19. TAIGA Gamma Observatory: Status and Prospects
- Author
-
M. Kunnas, Roman Raikin, Aleksey Zagorodnikov, A. A. Grinyuk, K. G. Kompaniets, V. Samoliga, A. V. Skurikhin, Evgeny Postnikov, A. N. Dyachok, Y. Sagan, B.A. Tarashansky, S. Kiryuhin, L. A. Kuzmichev, R. Wischnewski, V. M. Grebenyuk, L. V. Pankov, M. Slunecka, N. B. Lubsandorzhiev, Bayarto Lubsandorzhiev, A. V. Tkachenko, R. D. Monkhoev, T. I. Gress, V. A. Poleschuk, M. Popesku, L. G. Sveshnikova, V. S. Ptuskin, R. Nachtigall, E. A. Osipova, A. Chiavassa, V. Prosin, N. I. Karpov, O. A. Gress, M. Tluczykont, Pavel Bezyazeekov, V. Boreyko, O. G. Grishin, V. A. Kozhin, A. Pakhorukov, V. V. Kindin, L. G. Tkachev, Aleksandr Gafarov, N. V. Gorbunov, A. A. Silaev, Valery Zurbanov, A. Pushnin, R. R. Mirgazov, Oleg Fedorov, A. Borodin, E. A. Kravchenko, A. A. Petrukhin, E. E. Korosteleva, A. Sh. M. Elshoukrofy, A. Ivanova, Yulia Kazarina, A. Garmash, R. P. Kokoulin, V.A. Tabolenko, E.G. Popova, V. P. Sulakov, Yu. A. Semeney, A. D. Horns, V. V. Lenok, A. Porelli, P. Kirilenko, C. Spiering, Andrey Sokolov, I. I. Yashin, A. Sidorenkov, Anatoly Lagutin, Grigory Rubtsov, N. N. Kalmykov, I. I. Astapov, N. M. Budnev, R. Mirzoyan, and Mikhail Panasyuk
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,IACT ,Cosmic ray ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Particle detector ,Observatory ,0103 physical sciences ,Measuring instrument ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
Over the past few years, the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) observatory has been being deployed in the Tunka Valley, Republic of Buryatia. It is designed for studying gamma rays of energy above 30 TeV and performing searches for sources of galactic cosmic rays with energies in the vicinity of 1 PeV, which is an energy region around the classic knee in the cosmic-ray energy spectrum. The first phase of the observatory will be situated at a distance of about 50 km from Lake Baikal at the site of the Tunka-133 array. The TAIGA gamma observatory will include a network of 500 wide-angle (0.6 sr) Cherenkov detectors (TAIGA-HiSCORE array) and up to 16 atmospheric Cherenkov telescopes (ACT) designed for analyzing the EAS images (imaging atmospheric Cherenkov telescopes, or IACT) and positioned within an area of 5 km2. The observatory will also include muon detectors of total area 2000 m2 distributed over an area of 1 km2. Within the next three years, it is planned to enhance the area of the TAIGA-HiSCORE array by a factor of four—from 0.25 km2 to 1 km2; to supplement the existing IACT with two new ones; and to deploy new muon detectors with a total coverage of 200 m2. The structure of the new observatory is described along with the data analysis techniques used. The most interesting physical results are presented, and the research program for the future is discussed.
- Published
- 2018
20. The Search for Diffuse Gamma Rays Using Data from the Tunka-Grande Experiment
- Author
-
S. Kiryuhin, Valery Zurbanov, O. A. Gress, Aleksandr Gafarov, A. Pushnin, A. Chiavassa, V. Prosin, V. A. Kozhin, A. A. Silaev, E. A. Osipova, D. M. Voronin, A. Pakhorukov, R. D. Monkhoev, T. I. Gress, V. A. Poleschuk, Mikhail Panasyuk, R. R. Mirgazov, A. V. Skurikhin, Bayarto Lubsandorzhiev, L. G. Sveshnikova, N. B. Lubsandorzhiev, L. A. Kuzmichev, V. S. Ptuskin, E.G. Popova, Aleksey Zagorodnikov, V.A. Tabolenko, E. E. Korosteleva, N. N. Kalmykov, V. P. Sulakov, Yu. A. Semeney, C. Spiering, A. N. Dyachok, Y. Kazarina, N. M. Budnev, and L. V. Pankov
- Subjects
010302 applied physics ,Physics ,Range (particle radiation) ,010308 nuclear & particles physics ,0103 physical sciences ,Hadron ,Energy spectrum ,Gamma ray ,General Physics and Astronomy ,Cosmic ray ,Astrophysics ,Mass composition ,01 natural sciences - Abstract
The Tunka-Grande array is part of an experimental complex located in the Tunka Valley (Republic of Buryatia, Russia) about 50 km from Lake Baikal. This complex also contains the Tunka-133 and Tunka-Rex arrays. The aim of this complex is to study the primary cosmic ray energy spectrum and mass composition in the energy range of 1016–1018 eV, and to search for diffuse gamma rays in the energy range of 5 × 1016–5 × 1017 eV. The design of the Tunka-Grande array and the procedure for reconstructing the parameters of extensive air showers (EASes) are described, and preliminary results are presented from the search for diffuse gamma rays with energies of more than 5 × 1016 eV.
- Published
- 2019
21. Scintillation detectors for the TAIGA experiment
- Author
-
Evgeny Postnikov, Yu. A. Semeney, P. Kirilenko, V.A. Tabolenko, V. V. Lenok, Bayarto Lubsandorzhiev, A. Porelli, L. A. Kuzmichev, Aleksandr Gafarov, M. Kunnas, V. M. Grebenyuk, D. Zhurov, Andrey Sokolov, R. R. Mirgazov, E. A. Kravchenko, Valery Zurbanov, A. A. Petrukhin, Aleksey Zagorodnikov, A. A. Grinyuk, A. Chiavassa, V. Prosin, Mikhail Panasyuk, E. E. Korosteleva, B.A. Tarashansky, A. A. Silaev, V. Samoliga, A. Garmash, R. P. Kokoulin, M. Brueckner, Yulia Kazarina, R. D. Monkhoev, T. I. Gress, E. A. Osipova, L. G. Sveshnikova, V. A. Poleschuk, R. Mirzoyan, A. V. Skurikhin, Oleg Fedorov, Pavel Bezyazeekov, A. Ivanova, R. Nachtigall, A. Pakhorukov, L. G. Tkachev, N. M. Budnev, Yu. Lemeshev, E.G. Popova, N. V. Gorbunov, Dieter Horns, M. Tluczykont, K. G. Kompaniets, I. I. Astapov, A. Borodin, S. Kiryuhin, Grigory Rubtsov, N. N. Kalmykov, O. Grishin, L. V. Pankov, A. N. Dyachok, M. V. Lavrova, A. Vaidyanathan, C. Spiering, O. A. Gress, V. A. Kozhin, V. V. Kindin, Evgenii V Rjabov, R. Wischnewski, M. Popesku, V. Slunecka, V. S. Ptuskin, N. B. Lubsandorzhiev, B. M. Sabirov, I. I. Yashin, A. Sidorenkov, A. Pushnin, and Y. Sagan
- Subjects
Physics ,Nuclear and High Energy Physics ,Scintillation ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Detector ,Scintillator ,Wavelength shifter ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Instrumentation ,Remote sensing - Abstract
It is planned that new TAIGA-Muon detectors will complement the existing Tunka-GRANDE facility of scintillation detectors of the TAIGA gamma-observatory in the Tunka valley, Russia. The new design of scintillation detector with wavelength shifting bars and PMTs is developed. The first prototype of the counter was installed and tested using infrastructure of the Tunka-GRANDE installation in 2017. The mass production of counters has begun in 2018 at the Novosibirsk State University.
- Published
- 2019
22. The Ceruloplasmin Transferrin Ratio in the Blood of Patients at Different Stages of Parkinson’s Disease
- Author
-
S. N. Illarioshkin, G. T. Rikhireva, V. V. Poleschuk, and M. G. Makletsova
- Subjects
0301 basic medicine ,chemistry.chemical_classification ,medicine.medical_specialty ,Parkinson's disease ,biology ,business.industry ,Significant difference ,Biophysics ,Disease ,medicine.disease ,Gastroenterology ,nervous system diseases ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,chemistry ,Transferrin ,Internal medicine ,Blood plasma ,medicine ,biology.protein ,In patient ,Ceruloplasmin ,business ,030217 neurology & neurosurgery - Abstract
The ratio of the concentrations of Cu2+-ceruloplasmin/Fe3+-transferrin in the blood plasma of 54 patients at different stages of Parkinson’s disease treated and not treated with L-DOPA was estimated by EPR-spectroscopy. It was established that in patients who suffer from Parkinson’s disease, the value of ceruloplasmin/ transferrin increased by 157% in comparison with the control group of clinically healthy people of the same age group. In patients with Parkinson’s disease, the ratio of ceruloplasmin/transferrin increased at stage 1 of the disease by 119%, at stage 2 by 117%, and at stage 3 by 135% in comparison with the control group. There was no statistically significant difference between the ratio of ceruloplasmin/transferrin in patients who received and did not recive L-DOPA replacement therapy. These data reveal changes in the functioning of the ceruloplasmin: transferrin system, which decreases the content of toxic ions of Fe2+ in the plasma of patients with Parkinson’s disease. These changes are a pathogenetically significant factor of Parkinson’s disease at all stages of the disease.
- Published
- 2017
23. The TAIGA-HiSCORE array prototype: Status and first results
- Author
-
I. I. Astapov, N. S. Barbashina, A. G. Bogdanov, V. Boreyko, N. M. Budnev, R. Wischnewski, A. R. Gafarov, V. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, N. Gorbunov, A. N. Dyachok, S. N. Epimakhov, A. V. Zagorodnikov, V. L. Zurbanov, A. L. Ivanova, Y. A. Kazarina, N. N. Kalmykov, N. I. Karpov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. Kravchenko, M. Kunnas, L. A. Kuzmichev, A. Chiavassa, V. V. Lenok, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, R. Nachtigall, A. L. Pakhorukov, E. A. Osipova, M. I. Panasyuk, L. V. Pankov, A. A. Petrukhin, M. Popescu, A. Porelli, A. A. Pushnin, V. A. Poleschuk, E. G. Popova, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, G. I. Rubtsov, V. S. Samoliga, Y. A. Semeney, A. A. Silaev, A. V. Skurikhin, L. G. Sveshnikova, A. Sokolov, V. A. Tabolenko, B. A. Tarashchansky, L. G. Tkachev, A. V. Tkachenko, M. Tluczykont, O. L. Fedorov, D. Horns, C. Spiering, K. Yurin, and I. I. Yashin
- Subjects
010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Taiga ,Gamma ray ,General Physics and Astronomy ,010303 astronomy & astrophysics ,01 natural sciences ,Geology ,Remote sensing - Abstract
The design for the TAIGA-HiSCORE array, a part of the TAIGA Gamma Ray Observatory, is considered. The observatory is being constructed in the Tunka Valley, 50 km from Lake Baikal. Preliminary results obtained using the first 28 optical stations of the array are presented.
- Published
- 2017
24. The effect of dopamine on in vitro methemoglobin formation in erythrocytes of patients with Parkinson’s disease under oxidative stress
- Author
-
G. T. Rikhireva, V. V. Poleschuk, M. G. Makletsova, and T. N. Fedorova
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Parkinson's disease ,Acrolein ,Biophysics ,Carnosine ,medicine.disease ,medicine.disease_cause ,In vitro ,Methemoglobin ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,0302 clinical medicine ,Endocrinology ,chemistry ,Biochemistry ,Dopamine ,hemic and lymphatic diseases ,Internal medicine ,medicine ,Incubation ,030217 neurology & neurosurgery ,Oxidative stress ,medicine.drug - Abstract
Using electron paramagnetic resonance, the dose-dependence effect of dopamine on methemoglobin formation in erythrocytes of patients with Parkinson’s disease under the activation of oxidative stress induced by acrolein and the possibilities for the correction of this pathological process using carnosine in vitro experiments have been examined. It was shown that incubation of erythrocytes with 1.5 mM dopamine did not change the methemoglobin content, while incubation with 15 mM dopamine caused a two fold increase in the methemoglobin content compared to its initial level; 10 μM acrolein increased methemoglobin formation threefold. Administration of 15 mM dopamine and, after 1 h, 10 μM acrolein to the incubation system increased methemoglobin formation tenfold compared to its initial level. Preincubation of erythrocytes with 5 mM carnosine followed by acrolein addition prevented the increase in the methemoglobin content, while carnosine had no effect on methemoglobin formation induced by dopamine.
- Published
- 2017
25. Tunka-Grande and TAIGA-Muon scintillation arrays: status and prospects
- Author
-
A. Porelli, Evgeny Postnikov, V. Chernykh, A. Petrukhin, E. A. Kravchenko, A. V. Skurikhin, E. E. Korosteleva, A. Pushnin, Y. Sagan, V. A. Poleschuk, Y. Suvorkin, Konstantin Ustinov, R. D. Monkhoev, R. P. Kokoulin, K. G. Kompaniets, Yu. Lemeshev, B. M. Sabirov, I. I. Astapov, V. V. Kindin, R. Mirzoyan, M. Popesku, Roman Raikin, Dieter Horns, M. Tluczykont, L. G. Tkachev, V. Samoliga, O. Grishin, A. A. Grinyuk, S. Kiryuhin, V. V. Prosin, V.A. Tabolenko, V. Slunecka, Grigory Rubtsov, N. N. Kalmykov, A. Chiavassa, BayarJon Paul Lubsandorzhiev, I. I. Yashin, V. S. Ptuskin, N. Ushakov, E. A. Osipova, Andrey Sokolov, N. B. Lubsandorzhiev, D. Zhurov, M. Ternovoy, M. Brueckner, Pavel Bezyazeekov, R. Wischnewski, D. Voronin, Yulia Kazarina, L. V. Pankov, A.V. Igoshin, O. A. Gress, A. Garmash, Alexander Kryukov, A. Pan, A. Sidorenkov, V. A. Kozhin, L. G. Sveshnikova, A. Ivanova, Aleksandr Gafarov, N. M. Budnev, B. A. Tarashchansky, A. Vaidyanathan, A. A. Silaev, A. V. Zagorodnikov, A. N. Dyachok, Anatoly Lagutin, P. Volchugov, L. A. Kuzmichev, A. L. Pakhorukov, V. M. Grebenyuk, Mikhail Panasyuk, A. Tanaev, E. Popova, R. R. Mirgazov, Oleg Fedorov, A. Borodin, T. I. Gress, and E. V. Ryabov
- Subjects
Physics ,History ,Scintillation ,Muon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Computer Science Applications ,Education - Abstract
The Tunka-Grande and TAIGA-Muon arrays are the part of a single experimental complex, which also includes the Tunka-133 and TAIGA-HiSCORE (High Sensitivity COsmic Rays and gamma Explorer) wide-angle Cherenkov arrays, TAIGA-IACT array (Imaging Atmospheric Cherenkov Telescope) and Tunka-Rex radio antennas array (Tunka Radio Extension). This complex is located in the Tunka Valley (Buryatia Republic, Russia), 50 km from Lake Baikal. It is aimed at investigating the energy spectrum and mass composition of charged cosmic rays in the energy range 100 TeV - 1000 PeV, searching for diffuse gamma rays above 100 TeV and studying local sources of gamma rays with energies above 30 TeV. This report outlines 3 key points. The first is a description of the Tunka-Grande and TAIGA-Muon scintillation arrays. The second part presents preliminary results of the search for diffuse gamma rays with energies above 50 PeV according to the Tunka-Grande data. The third part is devoted to the prospects of the search for diffuse gamma rays with energies above 100 TeV using the TAIGA-Muon array.
- Published
- 2020
26. First detection of gamma-ray sources at TeV energies with the first imaging air Cherenkov telescope of the TAIGA installation
- Author
-
M. Popesku, V. S. Ptuskin, A. Pushnin, M. Slunecka, M. V. Lavrova, A. Petrukhin, M. Tluczykont, A. Silaev junior, Andrey Sokolov, Grigory Rubtsov, A. N. Dyachok, N. N. Kalmykov, L. A. Kuzmichev, B.A. Tarashansky, V. M. Grebenyuk, M. Ternovoy, N. Ushakov, O. A. Gress, V. A. Kozhin, O. G. Grishin, R. R. Mirgazov, V. Samoliga, A. Ivanova, L. V. Pankov, T. I. Gress, L. G. Sveshikova, N. B. Lubsandorzhiev, Y. Suvorkin, A. Borodin, Aleksandr Gafarov, Evgeny Postnikov, V. A. Poleschuk, E. A. Osipova, Mikhail Panasyuk, A. Bulan, Pavel Bezyazeekov, A. A. Silaev, A. V. Zagorodnikov, D. Zhurov, D. Voronin, A. Chiavassa, A. Porelli, V. V. Kindin, B. K. Lubsandorzhiev, R. Mirzoyan, V.A. Tabolenko, Y. Sagan, A. Yu. Garmash, E. A. Kravchenko, E. E. Korosteleva, L. G. Tkachev, R. P. Kokoulin, K. G. Kompaniets, A. V. Skurikhin, P. Volchugov, A. Pan, A. L. Pakhorukov, Evgenii V Rjabov, N. M. Budnev, A. Tanaev, A. Yu. Sidorenkov, Dieter Horns, A. Vaidyanathan, Roman Raikin, E.G. Popova, A. A. Grinyuk, R. Wischnewski, R. D. Monkhoev, I. I. Yashin, Alexander Kryukov, M. Brückner, Anatoly Lagutin, Yu. Lemeshev, S. Kiryuhin, V. V. Prosin, M. Blank, and I. I. Astapov
- Subjects
Telescope ,Physics ,History ,law ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Cherenkov radiation ,Computer Science Applications ,Education ,law.invention - Abstract
TAIGA array addresses gamma-ray astronomy at energies from a few TeV to several PeV as well as cosmic ray physics from 100 TeV to several EeV. A 1 km2 TAIGA setup will consist of 120 wide-angle detectors of the Cherenkov timing array TAIGA-HiSCORE and three imaging air Cherenkov telescopes with the field of view diameter of 9.6°. In this paper, first experimental results of the first operation stage are presented: signal detection from two gamma-ray sources, the Crab Nebula and Markarian 421, by the first IACT in stand-alone mode. The detected signal is shown to be in agreement with the Monte Carlo expectation. In future, gamma-ray signal will be detected by a larger number of TAIGA telescopes as well as the TAIGA-HiSCORE array, that is, in combined operation mode.
- Published
- 2020
27. Status of the early construction phase of Baikal-GVD
- Author
-
Aleksandr Gafarov, A. V. Zagorodnikov, A.P. Koshechkin, I. A. Danilchenko, A. I. Panfilov, O.G. Kebkal, T. I. Gress, M.I. Rozanov, A. A. Perevalov, E.N. Pliskovsky, D.A. Kuleshov, F.K. Koshel, A.A. Sheifler, A.D. Avrorin, A. V. Skurikhin, K. V. Konishchev, V.F. Kulepov, G.V. Domogatsky, D. Bogorodsky, A.V. Korobchenko, N. M. Budnev, B. Shaibonov, V. M. Aynutdinov, V.F. Rubtsov, A.A. Smagina, V.B. Brudanin, M.B. Milenin, Sergey Yakovlev, E. A. Osipova, Z. Honz, Valery Zurbanov, Olga Suvorova, L. V. Pankov, R. R. Mirgazov, A. A. Doroshenko, O. N. Gaponenko, Zh.-A.M. Dzhilkibaev, Evgenii V Rjabov, V. A. Kozhin, B. A. Tarashchansky, A. N. Dyachok, V.I. Ljashuk, A.V. Avrorin, V. A. Poleschuk, E. N. Konstantinov, I. A. Belolaptikov, Konstantin Kebkal, R. Bannasch, S.V. Fialkovsky, V. A. Zhukov, and K.V. Golubkov
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Positioning system ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Neutrino telescope ,Astrophysics::Instrumentation and Methods for Astrophysics ,Phase (waves) ,Astronomy ,Cluster (spacecraft) ,01 natural sciences ,Software deployment ,0103 physical sciences ,Instrumentation (computer programming) ,Neutrino telescopes ,Lake Baikal ,Aerospace engineering ,Neutrino ,010306 general physics ,business ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
The second-stage neutrino telescope BAIKAL-GVD in Lake Baikal will be a research infrastructure aimed mainly at studying astrophysical neutrino fluxes by recording the Cherenkov radiation of the secondary muons and showers generated in neutrino interactions. The prototyping/early construction phase of the BAIKAL-GVD project which is directed towards deployment and operation of the first demonstration cluster has been started in April 2011. An important step on realization of the GVD project was made in 2014 by the deployment of the second stage of the demonstration cluster which contains 112 OMs arranged on five strings, as well as equipment of an acoustic positioning system and instrumentation string with an array calibration and environment monitoring equipment. Deployment of the demonstration cluster will be completed in 2015.
- Published
- 2016
- Full Text
- View/download PDF
28. The Tunka-Grande experiment: Status and prospects
- Author
-
N. M. Budnev, R. D. Monkhoev, T. I. Gress, S. Kiryuhin, Aleksandr Gafarov, Evgeny Postnikov, Y. Kazarina, A. A. Silaev, C. Spiering, E. A. Osipova, D. M. Voronin, Yu. A. Fomin, A. N. Dyachok, A. Chiavassa, V. Prosin, V. V. Lenok, Bayarto Lubsandorzhiev, N. B. Lubsandorzhiev, Aleksey Zagorodnikov, V.A. Tabolenko, O. G. Grishin, L. G. Sveshnikova, V. S. Ptuskin, A. Pushnin, Valery Zurbanov, A. V. Skurikhin, E.G. Popova, V. Samoliga, E. E. Korosteleva, A. Pakhorukov, V. P. Sulakov, O. A. Gress, Yu. A. Semeney, A. Ivanova, V. A. Kozhin, R. R. Mirgazov, Oleg Fedorov, V. A. Poleschuk, L. A. Kuzmichev, S. N. Epimakhov, Dmitry Zhurov, N. N. Kalmykov, L. V. Pankov, R. Mirzoyan, and Mikhail Panasyuk
- Subjects
Physics ,Scintillation ,Range (particle radiation) ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Charged particle ,Nuclear physics ,0103 physical sciences ,Scintillation counter ,010306 general physics ,Cherenkov radiation ,Radio wave - Abstract
The Tunka-Grande scintillation array is described. The first results from its operation are presented. The prospects for studying primary cosmic rays in the energy range of 1016 to 1018 eV during simultaneous registration of the Cherenkov and charged particle components along with radio emissions from extensive air showers are discussed.
- Published
- 2017
29. Development of a novel wide-angle gamma-ray imaging air Cherenkov telescope with SiPM-based camera for the TAIGA hybrid installation
- Author
-
A. Chiavassa, E. A. Bonvech, Anatoly Lagutin, T. I. Gress, Dmitry Chernov, R. D. Monkhoev, R. Mirzoyan, Mihai Popescu, I. I. Yashin, A. Sidorenkov, L. G. Sveshnikova, D. Zhurov, V. Samoliga, V. A. Poleschuk, A. V. Skurikhin, A. Garmash, L. G. Tkachev, N. B. Lubsandorzhiev, E. A. Osipova, R. R. Mirgazov, D. Chernukh, Roman Raikin, Aleksandr Gafarov, Grigory Rubtsov, Oleg Fedorov, Pavel Bezyazeekov, N. N. Kalmykov, D. Voronin, Y. Sagan, A. A. Silaev, A. V. Zagorodnikov, Dieter Horns, A. A. Grinyuk, Mikhail Panasyuk, D. A. Podgrudkov, V. Vorobiov, A. Borodin, A. N. Dyachok, E. A. Kravchenko, B. K. Lubsandorzhiev, M. Brueckner, E. E. Korosteleva, O. A. Gress, A. Pushnin, B.A. Tarashansky, E. Popova, A. A. Petrukhin, Evgeny Postnikov, R. P. Kokoulin, P. Volchugov, V. A. Kozhin, A. L. Pakhorukov, V. V. Kindin, M. Tluczykont, A. Tanaev, Yulia Kazarina, I. I. Astapov, V.A. Tabolenko, R. Wischnewski, Yu. Lemeshev, V. Slunecka, E. Rybov, V. S. Ptuskin, S. Kiryuhin, V. V. Prosin, N. Ushakov, L. V. Pankov, L. M. Ternovoy, Andrey Sokolov, K. G. Kompaniets, A. Ivanova, A. Vaidyanathan, O. Grishin, A. Porelli, A. Pan, N. M. Budnev, L. A. Kuzmichev, V. M. Grebenyuk, Y. Suvorkin, and A. Krykov
- Subjects
Physics ,Data processing ,business.industry ,Gamma ray ,Cosmic ray ,Electromagnetic radiation ,law.invention ,Telescope ,Optics ,Silicon photomultiplier ,Data acquisition ,law ,business ,Instrumentation ,Mathematical Physics ,Cherenkov radiation - Published
- 2020
30. An approach for identification of ultrahigh energy extensive air showers with scintillation detectors at TAIGA experiment
- Author
-
T. I. Gress, A. Chiavassa, E. Popova, Y. Suvorkin, E. A. Osipova, A. V. Skurikhin, Pavel Bezyazeekov, V. Slunecka, B.A. Tarashansky, V. A. Poleschuk, V. S. Ptuskin, V. Vorobyev, L. G. Tkachev, Mihai Popescu, Dieter Horns, D. Voronin, B. K. Lubsandorzhiev, M. Brueckner, Mikhail Panasyuk, D. Zhurov, D. Chernukh, A. Garmash, A. Ivanova, E. A. Kravchenko, E. E. Korosteleva, Y. Sagan, R. P. Kokoulin, N. B. Lubsandorzhiev, Andrey Sokolov, V. V. Lenok, V. Samoliga, L. G. Sveshnikova, A. Krykov, R. Wischnewski, R. Mirzoyan, A. Pushnin, A. Bulan, M. Tluczykont, P. Volchugov, A. L. Pakhorukov, Anatoly Lagutin, Roman Raikin, R. R. Mirgazov, A. Tanaev, O. A. Gress, L. A. Kuzmichev, V. M. Grebenyuk, A. Pan, Oleg Fedorov, V. A. Kozhin, V. V. Kindin, A. Porelli, N. M. Budnev, A. A. Grinyuk, A. Silaev junior, A. Borodin, R. D. Monkhoev, A. Vaidyanathan, K. G. Kompaniets, I. I. Yashin, A. Sidorenkov, O. Grishin, Aleksandr Gafarov, A. N. Dyachok, A. A. Silaev, A. V. Zagorodnikov, Evgeny Postnikov, N. Ushakov, A. A. Petrukhin, L. V. Pankov, Yulia Kazarina, L. M. Ternovoy, Yu. Lemeshev, S. Kiryuhin, V. V. Prosin, I. I. Astapov, Grigory Rubtsov, N. N. Kalmykov, E. Rybov, and V.A. Tabolenko
- Subjects
Scintillation ,Detector ,Scintillation counter ,Taiga ,Measuring instrument ,Environmental science ,Cosmic ray ,Ultrahigh energy ,Instrumentation ,Mathematical Physics ,Particle detector ,Remote sensing - Published
- 2020
31. TAIGA—A hybrid array for high-energy gamma astronomy and cosmic-ray physics
- Author
-
A. A. Petrukhin, E. A. Osipova, A. V. Skurikhin, A. Grinyuk, E. A. Kravchenko, D. Chernykh, E. E. Korosteleva, A. Garmash, R. P. Kokoulin, Dmitry Zhurov, Pavel Bezyazeekov, R. R. Mirgazov, B. A. Tarashchansky, Dieter Horns, Evgeny Postnikov, M. Popesku, Y. Suvorkin, Martin Tluczykont, S. Kiryuhin, Razmik Mirzoyan, O. Fedorov, V.A. Tabolenko, Konstantin Ustinov, A. Pakhorukov, A. Borodin, Aleksey Zagorodnikov, A. Chiavassa, V. Prosin, Valery Zurbanov, Bayarto Lubsandorzhiev, M. Slunecka, Y. Kazarina, L. G. Sveshnikova, I. V. Yashin, V. S. Ptuskin, Yaroslav Sagan, A. Pushnin, R. D. Monkhoev, Victor Grebenyuk, T. I. Gress, Dmitriy Kostunin, O. A. Gress, V. A. Poleschuk, N. M. Budnev, A. Silaev junior, E.G. Popova, A. Pan, D. Voronin, V. A. Kozhin, E. V. Ryabov, I. I. Astapov, V. V. Kindin, L. Tkachev, Roman Raikin, V. Samoliga, Ralf Wischnewski, L. A. Kuzmichev, A. Porelli, A. N. Dyachok, O. G. Grishin, Grigory Rubtsov, N. N. Kalmykov, Ch. Spiering, N. B. Lubsandorzhiev, A. Vaidyanathan, N. Ushakov, L. V. Pankov, K. Komponiets, A. Ivanova, Mikhail Panasyuk, Aleksandr Gafarov, A. A. Silaev, Alexander Kryukov, A. Sidorenkov, M. Brückner, Anatoly Lagutin, and A. Sokolov
- Subjects
Physics ,Nuclear and High Energy Physics ,High energy ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,7. Clean energy ,01 natural sciences ,Observatory ,Hybrid array ,0103 physical sciences ,010306 general physics ,Instrumentation ,Cherenkov radiation - Abstract
The combination of a wide angle timing Cherenkov array and Imaging Atmospheric Cherenkov Telescopes operated in mono mode offers a cost-effective way to construct a few square kilometers array for ultrahigh-energy gamma astronomy. The first stage of the TAIGA Observatory (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is described here. It will comprise TAIGA-HiSCORE - 120 wide angle Cherenkov stations distributed over an area of 1.0 km2 and three IACTs (TAIGA-IACT).
- Published
- 2020
32. Status of the Tunka Advanced Instrument for Cosmic Ray Physics and Gamma Astronomy (TAIGA)
- Author
-
R. D. Monkhoev, T. I. Gress, E. A. Kravchenko, Yu. Lemeshev, E. E. Korosteleva, E. A. Osipova, M. Kunnas, Pavel Bezyazeekov, R. P. Kokoulin, S. Kiryuhin, Aleksandr Gafarov, R. R. Mirgazov, K. G. Kompaniets, V. A. Poleschuk, M. Popesku, A. A. Silaev, A. Pakhorukov, A. Chiavassa, V. Prosin, D. Zhurov, L. G. Tkachev, V. V. Lenok, Oleg Fedorov, B. M. Sabirov, Valery Zurbanov, R. Wischnewski, A. Borodin, V. Slunecka, O. Grishin, A. Porelli, Aleksey Zagorodnikov, A. N. Dyachok, V. S. Ptuskin, Ch. Spiering, A. A. Petrukhin, A. V. Skurikhin, I. I. Yashin, R. Nachtigall, B.A. Tarashansky, Yulia Kazarina, V.A. Tabolenko, A. V. Tkachenko, Yu. A. Semeney, A. Sidorenkov, L. G. Sveshnikova, Andrey Sokolov, R. Mirzoya, Grigory Rubtsov, L. V. Pankov, N. N. Kalmykov, Evgenii V Rjabov, E.G. Popova, M. Tluczykont, A. A. Grinyuk, O. A. Gress, V. A. Kozhin, I. I. Astapov, V. V. Kindin, N. M. Budnev, V. Samoliga, Y. Sagan, Mikhail Panasyuk, L. A. Kuzmichev, V. M. Grebenyuk, N. B. Lubsandorzhiev, M. Brueckner, A. Ivanova, A. Pushnin, Evgeny Postnikov, and Bayarto Lubsandorzhiev
- Subjects
Physics ,Gamma ray ,Astronomy ,Cosmic ray ,Cherenkov radiation ,Muon detector - Published
- 2018
33. The HiSCORE Project
- Author
-
M. Brückner, Martin Tluczykont, L. G. Sveshnikova, Petr Satunin, S. Epimakhov, Grigory Rubtsov, N. N. Kalmykov, A. L. Pakhorukov, Bayarto Lubsandorzhiev, E. E. Korosteleva, V. S. Ptuskin, V. Kozin, V. V. Prosin, V. Zirakashvili, R. D. Monkhoev, V. A. Poleschuk, M. Kunnas, R. R. Mirgazov, A. N. Dyachok, Mikhail Panasyuk, O. A. Gress, Yu. Semeney, E. N. Konstantinov, A. Skukhin, N. M. Budnev, D. Hampf, Aleksey Zagorodnikov, A. Ivanova, O. Chvalaev, A. Porelli, D. Spitschan, R. Nachtigall, Dieter Horns, Ralf Wischnewski, and L. A. Kuzmichev
- Subjects
Astroparticle physics ,Physics ,COSMIC cancer database ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Air shower ,lcsh:TA1-2040 ,General Earth and Planetary Sciences ,lcsh:Engineering (General). Civil engineering (General) ,General Environmental Science - Abstract
A central question of Astroparticle Physics, the origin of cosmic rays, still remains unsolved. HiSCORE (Hundred*i Square-km Cosmic ORigin Explorer) is a concept for a large-area wide-angle non-imaging air shower detector, addressing this question by searching for cosmic ray pevatrons in the energy range from 10TeV to few PeV and cosmic rays in the energy range above 100TeV. In the framework of the Tunka-HiSCORE project, first prototypes have been deployed on the site of the Tunka-133 experiment, where we plan to install an engineering array covering an area of the order of 1km2. On the same site, also imaging and particle detectors are planned, potentially allowing a future hybrid detector system. Here we present the HiSCORE detector principle, its potential for cosmic ray origin search and the status of ongoing activities in the framework of the Tunka-HiSCORE experiment.
- Published
- 2014
34. TAIGA-HiSCORE: results from the first two operation seasons
- Author
-
I. V. Yashin, Evgeny Postnikov, V. V. Kindin, Bayarto Lubsandorzhiev, A. A. Petrukhin, Mikhail Panasyuk, B.A. Tarashansky, Yulia Kazarina, V. V. Lenok, Razmik Mirzoyan, Yu. Semeney, E. M. Popescu, Valery Zurbanov, Yaroslav Sagan, B. M. Sabirov, A. Porelli, A. Chiavassa, V. Prosin, Grigory Rubtsov, N. N. Kalmykov, O. A. Gress, A. V. Tkachenko, V. A. Poleschuk, E.G. Popova, A. Sidorenkov, A. N. Dyachok, C. Spiering, V. A. Kozhin, Andrey Sokolov, L. G. Sveshnikova, N. M. Budnev, M. Brueckner, N. B. Lubsandorzhiev, Martin Tluczykont, Yu. Lemeshev, V.A. Tabolenko, S. Kiryuhin, R. D. Monkhoev, T. I. Gress, D. Zhurov, V. Slunecka, E. A. Kravchenko, I. I. Astapov, V. S. Ptuskin, E. E. Korosteleva, A.V. Skurihin, A. Ivanova, P. Kirilenko, L. V. Pankov, A. Garmash, Ralf Wischnewski, L. A. Kuzmichev, R. Nachtigall, R. R. Mirgazov, Dieter Horns, Oleg Fedorov, A. Borodin, A. Pushnin, E. A. Osipova, Pavel Bezyazeekov, V. Boreyko, N. V. Gorbunov, A. Pakhorukov, L. G. Tkachev, V. Samoliga, M. Kunnas, Evgenii V Rjabov, Aleksey Zagorodnikov, K. G. Kompaniets, O. Grishin, Victor Grebenyuk, A. A. Grinyuk, Aleksandr Gafarov, A. A. Silaev, and R. P. Kokoulin
- Subjects
Lidar ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Calibration ,Environmental science ,Cutoff ,Sampling (statistics) ,Cosmic ray ,Satellite ,Cherenkov radiation ,Remote sensing - Abstract
The very to ultra high energy gamma-ray regime up to several 100 TeV is the key to spectrally resolve the cutoff regime of the long-sought Pevatrons, the Galactic cosmic-ray PeV accelerators. One component of the TAIGA hybrid detector is the TAIGA-HiSCORE shower-front sampling timing array, which currently consists of 28 wide angle (0.6\,sr) air Cherenkov timing stations distributed on an area of 0.25 km$^{2}$, and which will be doubled in area by fall 2017. We report on the status and first results of the HiSCORE timing array after the first 2 operation seasons, including calibration studies on timing and pointing, cross calibration with data from the first TAIGA-IACT, observations with the timing array of a LIDAR operating on the ISS, a measurement of the Cosmic Ray spectrum, and a systematic search for high energy gamma-rays from Galactic sources such as the Crab.
- Published
- 2017
35. First gravitational-wave burst GW150914: MASTER optical follow-up observations
- Author
-
V. Vladimirov, A. Gabovich, D. Dormidontov, Miquel Serra-Ricart, E. S. Gorbovskoy, V. G. Kornilov, V. A. Poleschuk, V. Senik, D. A. H. Buckley, N. M. Budnev, C. Mallamaci, K. Ivanov, A. Y. Kniazev, Jochen Greiner, A. G. Tlatov, A. V. Parkhomenko, Steven M. Crawford, D. Vlasenko, D. Kuvshinov, S. B. Potter, H. Levato, S. Yazev, Yu. Sergienko, F. Podesta, P. Balanutsa, N. Lodieu, V. Yurkov, G. Israelian, O. A. Gress, R. Rebolo Lopez, A. Kuznetsov, V. M. Lipunov, R. Podesta, C. Saffe, N. Tiurina, C. Lopez, and V. Chazov
- Subjects
Gravitational-wave observatory ,Ciencias Físicas ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Optical telescope ,purl.org/becyt/ford/1 [https] ,General Relativity and Quantum Cosmology ,Binary black hole ,Observatory ,0103 physical sciences ,010303 astronomy & astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,Gravitational wave ,Astronomy ,Astronomy and Astrophysics ,purl.org/becyt/ford/1.3 [https] ,LIGO ,GRAVITATIONAL WAVES ,Astronomía ,Robotic telescope ,Space and Planetary Science ,BLACK HOLES [STARS] ,Astrophysics - High Energy Astrophysical Phenomena ,CIENCIAS NATURALES Y EXACTAS ,Fermi Gamma-ray Space Telescope - Abstract
The Advanced LIGO observatory recently reported the first direct detection of gravitational waves predicted by Einstein (1916). We report on the first optical observations of the Gravitational Wave (GW) source GW150914 error region with the Global MASTER Robotic Net. We detected several optical transients, which proved to be unconnected with the GW event. Our result is consistent with the assumption that gravitational waves were produced by a binary black hole merger. The detection of the event confirmed the main prediction of the population synthesis performed with the "Scenario Machine" formulated in Lipunov1997b., 11 pages, 7 figures, 4 tables
- Published
- 2017
36. The TAIGA experiment: From cosmic-ray to gamma-ray astronomy in the Tunka valley
- Author
-
A. Haungs, N. B. Lubsandorzhiev, V. Samoliga, Grigory Rubtsov, N. N. Kalmykov, M. Brückner, A Saunkin, E. A. Osipova, D. Voronin, E.G. Popova, Pavel Bezyazeekov, V. Boreyko, O. G. Grishin, R. Hiller, B. K. Lubsandorzhiev, V. A. Poleschuk, A. N. Dyachok, N. V. Gorbunov, N Kirichkov, E. A. Kravchenko, L. Sveshnikova, E. E. Korosteleva, M. Kunnas, N. Karpov, E. Rybov, A. Pakhorukov, R. P. Kokoulin, R. D. Monkhoev, T. I. Gress, E. Fedoseev, A. V. Tkachenko, A. G. Bogdanov, R. Mirzoyan, A. Pushnin, Aleksandr Gafarov, M. Kleifges, R. R. Mirgazov, V.A. Tabolenko, A. Ivanova, Evgeny Postnikov, N. S. Barbashina, V Platonov, A. A. Silaev, A. V. Zagorodnikov, Oleg Fedorov, Y. Kazarina, K. O. Yurin, L. V. Pankov, A. A. Grinyuk, I. I. Astapov, Dmitriy Kostunin, O. A. Gress, V. Zirakashvili, B. A. Tarashchansky, V. A. Kozhin, O. Chvalaev, S.G. Pivovarov, Yu. A. Tikhonov, V. S. Ptuskin, F.G. Schröder, M. Tluczykont, R. Wischnewski, T. Huege, C. Spiering, Andrey Sokolov, N. M. Budnev, I. I. Yashin, A. Barnyakov, Valery Zurbanov, L. G. Tkachev, K. G. Kompaniets, Yu. A. Semeney, V. V. Lenok, A. Porelli, P. Kirilenko, A. V. Skurikhin, L. A. Kuzmichev, V. M. Grebenyuk, R. Nachtigall, Dieter Horns, A. Chiavassa, A. A. Perevalov, A. A. Petrukhin, S. Epimakhov, S. Kiryuhin, V. V. Prosin, and M. I. Panasyuk
- Subjects
Nuclear and High Energy Physics ,TAIGA ,Physics::Instrumentation and Detectors ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,IACT ,Astrophysics ,01 natural sciences ,law.invention ,Observatory ,law ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation ,Cherenkov radiation ,Physics ,Muon ,Gamma astronomy ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Gamma-ray astronomy - Abstract
We present physical motivations and advantages of the new gamma-observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and gamma-ray astronomy). TAIGA will be located in the Tunka valley, 50 km to the west of Lake Baikal, at the same place as the integrating air Cherenkov detector for cosmic rays Tunka-133. The TAIGA array is a complex, hybrid detector for ground-based gamma-ray astronomy for energies from a few TeV to several PeV as well as for cosmic ray studies from 100 TeV to several EeV. The array will consist of a wide angle Cherenkov array – TAIGA-HiSCORE with 5km2 area, a net of 16 IACT telescopes (with FOV of about 9.72°×9.72°) as well as muon and other detectors. We present the current status of the array construction.
- Published
- 2017
37. First results of the tracking system calibration of the TAIGA-IACT telescope
- Author
-
E. A. Osipova, Pavel Bezyazeekov, Dmitriy Zhurov, V. Boreyko, A. A. Petrukhin, A. V. Tkachenko, Yu. A. Semeney, Yulia Kazarina, A. Pushnin, N. V. Gorbunov, A. N. Dyachok, R. D. Monkhoev, B. M. Sabirov, Yu. Lemeshev, A. V. Skurikhin, S. Kiryuhin, K. G. Kompaniets, V. V. Prosin, R. Nachtigall, Valery Zurbanov, Denis Sidorov, Aleksandr Gafarov, I. I. Yashin, Andrey Sokolov, V. A. Poleschuk, L. G. Sveshnikova, L. V. Pankov, O. Grishin, R. Mirzoyan, M. Brueckner, A. Ivanova, Grigory Rubtsov, A. A. Silaev, N. N. Kalmykov, A. V. Zagorodnikov, Evgeny Postnikov, C. Spiering, P. Kirilenko, T. I. Gress, V. V. Lenok, A. Porelli, L. G. Tkachev, A. Silaev junior, M. Tluczykont, A. Sidorenkov, Y. Sagan, V. Samoliga, B.A. Tarashansky, L. A. Kuzmichev, V. M. Grebenyuk, Dieter Horns, R. R. Mirgazov, A. Chiavassa, BayarJon Paul Lubsandorzhiev, Evgenii V Rjabov, A. L. Pakhorukov, V. Slunecka, I. I. Astapov, V. S. Ptuskin, N. B. Lubsandorzhiev, Mikhail Panasyuk, O. A. Gress, Oleg Fedorov, N. M. Budnev, V. A. Kozhin, V. V. Kindin, A. Borodin, A. A. Grinyuk, M. Kunnas, E.G. Popova, Mihai Popescu, A. Garmash, V.A. Tabolenko, E. A. Kravchenko, R. Wischnewski, E. E. Korosteleva, and R. P. Kokoulin
- Subjects
Physics ,Rotary encoder ,History ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,IACT ,Tracking system ,Cosmic ray ,Computer Science Applications ,Education ,law.invention ,Telescope ,Observatory ,Sky ,law ,Astrophysics::Solar and Stellar Astrophysics ,business ,Astrophysics::Galaxy Astrophysics ,Cherenkov radiation ,Remote sensing ,media_common - Abstract
In TAIGA Observatory (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) we are commissioning the first Imaging Atmospheric Cherenkov Telescope (IACT). The telescope has an alt-azimuth mount and 17-bit shaft encoder for each axis, stepper motors are used for axis control. For the pointing calibration of the telescope a CCD-camera is installed on the dish of the telescope and its position allows to capture simultaneously both the Cherenkov camera with LEDs and the sky with observed source. Since October 2017, the telescope has been operating in tracking mode. In this work the TAIGAIACT telescope pointing calibration approach and first results of the tracking operations are described.
- Published
- 2019
38. A hydroacoustic positioning system for the experimental cluster of the cubic-kilometer-scale neutrino telescope at Lake Baikal
- Author
-
A. I. Panfilov, M.I. Rozanov, V. Karnaukhov, O. N. Gaponenko, A. A. Perevalov, D.A. Kuleshov, F.K. Koshel, I. A. Danilchenko, D. P. Petukhov, S. G. Yakovlev, A. V. Skurikhin, V. A. Poleschuk, A.V. Korobchenko, B.A. Tarashansky, V.F. Kulepov, D.Yu. Bogorodsky, V. I. Dobrynin, R. Bannasch, V. A. Kozhin, S.V. Fialkovsky, A. A. Doroshenko, A. G. Kebkal, B. A. Shaibonov, Zh.-A.M. Dzhilkibaev, T. I. Gress, A. A. Sheifler, A.V. Avrorin, E. A. Osipova, V. A. Zhukov, G.V. Domogatsky, Olga Suvorova, R. R. Mirgazov, M.B. Milenin, V. M. Aynutdinov, L. V. Pankov, E.N. Pliskovsky, A. M. Klabukov, K.V. Konischev, V.B. Brudanin, L. A. Kuzmichev, V. Yu. Rubtzov, A. N. Dyachok, E. V. Ryabov, I. A. Belolaptikov, Konstantin Kebkal, A.P. Koshechkin, Aleksandr Gafarov, A. V. Zagorodnikov, G. Pan'kov, Valery Zurbanov, V. I. Lyashuk, N. M. Budnev, and K.V. Golubkov
- Subjects
Physics ,Photomultiplier ,Positioning system ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Neutrino telescope ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Scale (descriptive set theory) ,Field tests ,law.invention ,Telescope ,Neutrino detector ,law ,Cluster (physics) ,Instrumentation ,Remote sensing - Abstract
The NT1000 deep-water neutrino telescope with an effective volume of ∼2 km3 is currently being developed at Lake Baikal by the BAIKAL collaboration. The telescope will be composed of functionally independent setups—clusters of strings of optical modules based on photomultiplier tubes (with eight strings in each cluster). Since 2011, field tests of the basic elements and systems of the future telescope included in autonomous measuring complexes—prototypes of the NT1000 cluster—have been performed at Lake Baikal. The basic elements and the layout of one of the currently considered versions of the acoustic positioning system for the NT1000 telescope are described, and results of tests of the system prototype included as a component in the experimental cluster of the year 2012 are presented.
- Published
- 2013
39. Asp-15—A stationary device for the measurement of the optical water properties at the NT200 neutrino telescope site
- Author
-
V. Rubtzov, V. A. Poleschuk, K.V. Golubkov, O. G. Grishin, E. A. Osipova, R. R. Mirgazov, B.A. Tarashansky, I. A. Belolaptikov, V. I. Lyashuk, L. A. Kuzmichev, A. A. Perevalov, M.B. Milenin, T. I. Gress, A. A. Sheifler, A. Rastegin, D. Bogorodsky, A.D. Avrorin, V.F. Kulepov, E. V. Ryabov, I. A. Danilchenko, O. A. Gress, G.V. Domogatsky, S.V. Fialkovsky, A. Pan'kov, V. A. Zhukov, A.V. Korobchenko, V. M. Aynutdinov, E.N. Pliskovsky, B. Shoibonov, A. M. Klabukov, R. Wischnewski, A. I. Panfilov, M.I. Rozanov, A. V. Zagorodnikov, N. M. Budnev, D. P. Petukhov, O. N. Gaponenko, D.A. Kuleshov, F.K. Koshel, A. A. Doroshenko, Zh.-A.M. Dzhilkibaev, A.P. Koshechkin, V. Karnaukhov, K.V. Konischev, A. N. Dyachok, Ch. Spiering, Olga Suvorova, L. V. Pankov, and A. S. Yagunov
- Subjects
Physics ,Nuclear and High Energy Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Solar neutrino ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics ,Solar neutrino problem ,Computational physics ,law.invention ,Telescope ,Neutrino detector ,law ,Measurements of neutrino speed ,ddc:530 ,Neutrino astronomy ,Neutrino ,Neutrino oscillation ,Instrumentation - Abstract
The operation of large underwater neutrino telescopes requires the precise knowledge of the water parameters governing light absorption and scattering, as well as a continuous monitoring of these parameters. For this purpose, a stationary underwater device, ASP-15, has been developed by the Baikal collaboration. We describe the basic assumptions and formulae behind ASP-15, the methods how absorption length, scattering length and phase functions are determined, the design of the device, and give some results obtained over many years of operation in conjuction with the Baikal telescope NT200.
- Published
- 2012
40. Prompt, early and afterglow optical observations of five γ-ray bursts: GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A
- Author
-
O. Chvalaev, R. Sanchez-Ramirez, Matwey V. Kornilov, Yu. Sergienko, D. Kuvshinov, V. M. Lipunov, I. Zalozhnich, A. J. Castro-Tirado, Javier Gorosabel, A. V. Parhomenko, V. Krushinski, P. Balanutsa, N. V. Tyurina, V. G. Kornilov, J. C. Tello, G. V. Lipunova, A. V. Sankovich, A. Popov, D. Dormidontov, I. P. Kudelina, Alexander Krylov, V. A. Poleschuk, V. Sennik, N. M. Budnev, E. N. Konstantinov, D. Varda, Martin Jelínek, A. Kuznetsov, A. Belinski, Andrey Tlatov, N. I. Shatskiy, V. Yurkov, V. Chazov, O. A. Gress, K. Ivanov, E. S. Gorbovskoy, D. S. Zimnukhov, and S. Yazev
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Light curve ,Galaxy ,Nordic Optical Telescope ,Afterglow ,law.invention ,Telescope ,Space and Planetary Science ,Observatory ,law ,Optical radiation ,Gamma-ray burst - Abstract
We present results of the prompt, early, and afterglow optical observations of five gamma-ray bursts, GRBs 100901A, 100902A, 100905A, 100906A, and 101020A, made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II net), the 1.5-m telescope of Sierra-Nevada Observatory, and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before cessation of gamma-ray emission, at 113 s and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted with two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. More detailed analysis of GRB 100901A and GRB 100906A supplemented by Swift data provides the following results and indicates different origins of the prompt optical radiation in the two bursts. The light curves patterns and spectral distributions suggest a common production site of the prompt optical and high-energy emission in GRB 100901A. Results of spectral fits for GRB 100901A in the range from the optical to X-rays favor power-law energy distributions with similar values of the optical extinction in the host galaxy. GRB 100906A produced a smoothly peaking optical light curve suggesting that the prompt optical radiation in this GRB originated in a front shock. This is supported by a spectral analysis. We have found that the Amati and Ghirlanda relations are satisfied for GRB 100906A. An upper limit on the value of the optical extinction on the host of GRB 100906A is obtained.
- Published
- 2012
41. The Baikal Neutrino Project: Present and perspective
- Author
-
A. Pan'kov, A.A. Sheifler, V. M. Aynutdinov, A.V. Korobchenko, I. V. Yashin, B. Shoibonov, K.V. Konischev, S.V. Fialkovsky, A. I. Klimov, V. I. Lyashuk, V. A. Zhukov, V.A. Balkanov, M.B. Milenin, B.A. Tarashansky, A. N. Dyachok, A.P. Koshechkin, N. M. Budnev, E. Middell, Ch. Spiering, E.N. Pliskovsky, A. M. Klabukov, D. P. Petukhov, Olga Suvorova, L. V. Pankov, A.D. Avrorin, A. Kochanov, R. R. Mirgazov, G.V. Domogatsky, A. I. Panfilov, A. S. Yagunov, A. V. Zagorodnikov, M.I. Rozanov, D.A. Kuleshov, V. A. Poleschuk, R. Wischnewski, K.V. Golubkov, T. I. Gress, A. V. Shirokov, V.F. Kulepov, O. N. Gaponenko, O. A. Gress, P. G. Pokhil, O. G. Grishin, I. A. Danilchenko, L. A. Kuzmichev, S. Mikheyev, I. A. Portyanskaya, I. A. Belolaptikov, A. A. Doroshenko, Zh.-A.M. Dzhilkibaev, E.G. Popova, V. V. Prosin, D. Bogorodsky, V. Rubtzov, and E. A. Osipova
- Subjects
Physics ,Nuclear and High Energy Physics ,Neutrino detector ,Neutrino telescope ,Detector ,Astronomy ,ddc:530 ,Neutrino ,Neutrino astronomy ,Instrumentation ,Cherenkov radiation - Abstract
The first stage Baikal Neutrino Telescope NT200 has been operating since 1998 and was upgraded to the 10 Mton detector NT200+ in 2005. The preparation towards a development of a km 3 -scale detector in Lake Baikal is currently a central activity point. As an important milestone a km 3 -prototype Cherenkov string, based on completely new technology, was installed in 2008 and has been successfully operating together with NT200+. It was upgraded in April 2009. Also, we review the status of high-energy acoustic neutrino detection activities in Lake Baikal.
- Published
- 2011
42. High energy neutrino acoustic detection activities in Lake Baikal: Status and results
- Author
-
A. I. Panfilov, M.I. Rozanov, I. A. Belolaptikov, T. I. Gress, S.V. Fialkovsky, V. A. Zhukov, N. M. Budnev, D. Bogorodsky, A. Kochanov, R. R. Mirgazov, A. A. Doroshenko, A. V. Shirokov, I. A. Danilchenko, D. P. Petukhov, A. I. Klimov, Zh.-A.M. Dzhilkibaev, V. V. Prosin, O. N. Gaponenko, A.D. Avrorin, E.G. Popova, B.A. Tarashansky, V. A. Poleschuk, P. G. Pokhil, E.N. Pliskovsky, E. A. Osipova, A. M. Klabukov, G.V. Domogatsky, K.V. Golubkov, O. G. Grishin, B. Shoibonov, V.F. Kulepov, V. Rubtzov, O. A. Gress, G. Pan'kov, E. Middell, V. M. Aynutdinov, M.B. Milenin, I. V. Yashin, A. N. Dyachok, Ralf Wischnewski, L. A. Kuzmichev, S. Mikheyev, Ch. Spiering, L. V. Pankov, A.P. Koshechkin, A.A. Sheifler, K.V. Konischev, and V.A. Balkanov
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Solar neutrino ,Astrophysics::Instrumentation and Methods for Astrophysics ,Geophysics ,Astrophysics ,Solar neutrino problem ,Noise ,Neutrino detector ,Computer Science::Sound ,Measurements of neutrino speed ,Neutrino ,Underwater ,Neutrino astronomy ,Instrumentation - Abstract
We review the status of high-energy acoustic neutrino detection activities in Lake Baikal. The Baikal collaboration constructed a hydro-acoustic device which may be regarded as a prototype subunit for a future underwater acoustic neutrino telescope. The device is capable of common operation with the Baikal neutrino telescope NT200+, and is operating at a depth of about 150 m on the “NT200+ instrumentation string”. Our measurements show that the integral noise power in the frequency band 20–40 kHz can reach levels as low as about 1 mPa, i.e. one of the lowest noise levels measured at the currently considered acoustic neutrino sites. At the same time, short acoustic pulses with different amplitudes and shapes have been observed. Low sound absorption in Baikal freshwater and absence of strong acoustic noise sources do motivate further activities towards a large-scale acoustic neutrino detector in Lake Baikal.
- Published
- 2009
43. The BAIKAL neutrino experiment—Physics results and perspectives
- Author
-
D. Bogorodsky, I. V. Yashin, E.N. Pliskovsky, A. M. Klabukov, E. A. Osipova, P. G. Pokhil, A.A. Sheifler, A. Rastegin, A.P. Koshechkin, G. Pan'kov, V. A. Poleschuk, V. M. Aynutdinov, S.V. Fialkovsky, B.A. Tarashansky, A. N. Dyachok, B. Shoibonov, V. A. Zhukov, A. I. Klimov, T. I. Gress, K.V. Konischev, Ch. Spiering, V.F. Kulepov, M.B. Milenin, V. Rubtzov, Ralf Wischnewski, A. Kochanov, R. R. Mirgazov, A. V. Shirokov, L. A. Kuzmichev, S. Mikheyev, V.A. Balkanov, Olga Suvorova, E. Middell, E.G. Popova, L. V. Pankov, I. A. Danilchenko, N. M. Budnev, O. A. Gress, D.A. Kuleshov, D. P. Petukhov, A. A. Doroshenko, K.V. Golubkov, Zh.-A.M. Dzhilkibaev, O. G. Grishin, A.D. Avrorin, V. V. Prosin, S. V. Lovtsov, A. I. Panfilov, G.V. Domogatsky, M.I. Rozanov, O. N. Gaponenko, and I. A. Belolaptikov
- Subjects
Astroparticle physics ,Physics ,Nuclear and High Energy Physics ,Solar neutrino ,Astrophysics (astro-ph) ,Detector ,Neutrino telescope ,FOS: Physical sciences ,Astronomy ,Solar neutrino problem ,Astrophysics ,Neutrino detector ,ddc:530 ,Neutrino ,Neutrino astronomy ,Instrumentation - Abstract
We review the status of the Lake Baikal Neutrino Experiment. The Neutrino Telescope NT200 has been operating since 1998 and has been upgraded to the 10 Mton detector NT200+ in 2005. We present selected astroparticle physics results from long-term operation of NT200. Also discussed are activities towards acoustic detection of UHE-energy neutrinos, and results of associated science activities. Preparation towards a km3-scale (Gigaton volume) detector in Lake Baikal is currently a central activity. As an important milestone, a km3-prototype string, based on completely new technology, has been installed and is operating together with NT200+ since April, 2008., Comment: 8 pages, 12 figures; presented at VLVNT08 (Very Large Volume Neutrino Telescope) Workshop, Toulon, France, April, 2008; to appear in NIM-A
- Published
- 2009
44. Baikal neutrino telescope—An underwater laboratory for astroparticle physics and environmental studies
- Author
-
T. I. Gress, O. N. Gaponenko, A. V. Shirokov, A. Rastegin, R. Wischnewski, E. A. Osipova, A. Kochanov, R. R. Mirgazov, G. Pan'kov, B.A. Tarashansky, V. A. Poleschuk, K.V. Golubkov, E.N. Pliskovsky, A. M. Klabukov, S.V. Fialkovsky, A.D. Avrorin, A. N. Dyachok, A. A. Doroshenko, I. A. Belolaptikov, S. V. Lovtsov, Zh.-A.M. Dzhilkibaev, V. V. Prosin, I. A. Danilchenko, G.V. Domogatsky, V. A. Zhukov, V. M. Aynutdinov, Ch. Spiering, V. Rubtzov, D. Bogorodsky, E.G. Popova, O. G. Grishin, A. I. Klimov, P. G. Pokhil, A.A. Sheifler, L. V. Pankov, A.P. Koshechkin, V.F. Kulepov, K.V. Konischev, V.A. Balkanov, L. A. Kuzmichev, S. Mikheyev, O. A. Gress, I. V. Yashin, M.B. Milenin, A. I. Panfilov, E. Middell, M.I. Rozanov, N. M. Budnev, D. P. Petukhov, and B. Shoibonov
- Subjects
Astroparticle physics ,Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Solar neutrino ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Solar neutrino problem ,Physics::Geophysics ,Neutrino detector ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Underwater ,Neutrino ,Neutrino astronomy ,Instrumentation - Abstract
We review the status of the Baikal Neutrino Experiment. The Neutrino Telescope NT200 is operating in Lake Baikal since 1998 and has been upgraded to the 10 Mton detector NT200+ in 2005. We present selected results concerning astroparticle physics as well as results of environmental studies. We describe the strategy of creating a Gigaton (km3) scale neutrino detector at Lake Baikal. First steps of activities towards a km3 Baikal neutrino telescope, including the development of acoustic high energy neutrino detection method are discussed.
- Published
- 2009
45. The Baikal Neutrino experiment: NT200+ and beyond
- Author
-
K.V. Golubkov, A. A. Pavlov, V. A. Poleschuk, T. I. Gress, V. M. Aynutdinov, V.F. Kulepov, R. Vasiliev, O. G. Grishin, A. V. Shirokov, K.V. Konischev, Yu. A. Semeney, B.A. Tarashansky, V. Rubtzov, A. Kochanov, R. R. Mirgazov, V.A. Balkanov, E.G. Popova, A.P. Koshechkin, S.V. Fialkovsky, E.N. Pliskovsky, O. N. Gaponenko, Ya. Davidov, I. A. Belolaptikov, D. Borschov, A. M. Klabukov, G. Pan'kov, V. A. Zhukov, A. I. Panfilov, M.I. Rozanov, E. A. Osipova, A. I. Klimov, L. V. Pankov, L. B. Bezrukov, N. M. Budnev, B. K. Lubsandorzhiev, D. P. Petukhov, A. A. Doroshenko, A. N. Dyachok, Zh.-A.M. Dzhilkibaev, R. Wischnewski, V. V. Prosin, Ch. Spiering, L. A. Kuzmichev, T. Mikolajski, S. Mikheyev, S. I. Klimushin, P. G. Pokhil, I. A. Danilchenko, B. A. M. Shaibonov, G.V. Domogatsky, M.B. Milenin, O. A. Gress, and I. V. Yashin
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Solar neutrino ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics ,Solar neutrino problem ,law.invention ,Telescope ,Neutrino detector ,law ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino ,Neutrino astronomy ,Neutrino oscillation ,Instrumentation - Abstract
The 10 Mton scale Neutrino telescope NT 200 + is operating in Lake Baikal since April, 2005. It's main physics goal is the detection of high energy neutrino cascades in the 10 2 – 10 5 TeV energy range. The NT 200 + sensitivity to astrophysical diffuse neutrinos is four times that of it's predecessor NT200 the telescope that has been operating since 1998, yielding a variety of physics results. A km-scale (Gigaton Volume) Neutrino telescope in Lake Baikal is planned, the R&D phase has started in 2006. We give the basic layout of this Baikal km3-detector, which will be made of building blocks similar to NT 200 + .
- Published
- 2007
46. Amplitude calibration with the HiSCORE-9 array
- Author
-
Grigory Rubtsov, V. A. Poleschuk, M. Brückner, N. M. Budnev, R. R. Mirgazov, V Platonov, D Bogorodskii, Bayarto Lubsandorzhiev, L. G. Sveshnikova, R. Nachtigall, E. Konstantinov, R. Mirzoyan, L. A. Kuzmichev, O. A. Gress, P Satunin, R. D. Monkhoev, N. B. Lubsandorzhiev, M. Tluczykont, R. Wischnewski, A. Pakhorukov, V. Prosin, O. Chvalaev, Aleksey Zagorodnikov, A. Ivanova, Dieter Horns, M. Kunnas, E. E. Korosteleva, S. Epimakhov, M Rüger, S Kiruhin, A Saunkin, D. Voronin, Yu. A. Semeney, V.A. Tabolenko, A. N. Dyachok, and A. Porelli
- Subjects
Physics ,History ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,Astrophysics ,530 Physik ,Computer Science Applications ,Education ,Optics ,Data acquisition ,Amplitude ,Calibration ,ddc:530 ,Ultrahigh energy ,business ,Cherenkov radiation ,Time synchronization - Abstract
HiSCORE is a non-imaging wide-angle Cherenkov array for the detection of extensive air showers induced by ultrahigh energy gamma-rays above 10 TeV and cosmic ray studies above 100 TeV. In October 2013 a 9-station engineering array has been deployed in Tunka valley. For HiSCORE-9, two DAQ systems are being used. The second system is a DRS4 based acquisition system with WhiteRabbit integrated time synchronization. We present the first results on the amplitude calibration from the data of this DAQ system.
- Published
- 2015
47. The BAIKAL neutrino experiment: From NT200 to NT200+
- Author
-
E. A. Osipova, B. K. Lubsandorzhiev, P. G. Pokhil, V.F. Kulepov, B.A. Tarashansky, K.V. Konischev, D. Borschov, Yu. A. Semeney, N. M. Budnev, V. A. Poleschuk, I. I. Yashin, B. A. M. Shaibonov, A. A. Doroshenko, V.A. Balkanov, T. Mikolajski, D. P. Petukhov, I. A. Danilchenko, V. M. Aynutdinov, L. V. Pankov, M.B. Milenin, G.V. Domogatsky, A. A. Pavlov, A. I. Panfilov, A. I. Klimov, Zh.-A.M. Dzhilkibaev, M.I. Rozanov, V. V. Prosin, A. N. Dyachok, O. A. Gress, A.P. Koshechkin, Ch. Spiering, E.G. Popova, S. I. Klimushin, O. N. Gaponenko, V. Rubtzov, Ya. Davidov, R. Vasiliev, S.V. Fialkovsky, V. A. Zhukov, K.V. Golubkov, I. A. Belolaptikov, L. B. Bezrukov, E.N. Pliskovsky, A. M. Klabukov, O. G. Grishin, Ralf Wischnewski, L. A. Kuzmichev, S. Mikheyev, A. Kochanov, R. R. Mirgazov, T. I. Gress, A. V. Shirokov, and G. Pan'kov
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Solar neutrino ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy ,Solar neutrino problem ,Astrophysics ,law.invention ,Telescope ,Neutrino detector ,law ,Measurements of neutrino speed ,ddc:530 ,High Energy Physics::Experiment ,Neutrino ,Neutrino astronomy ,Neutrino oscillation ,Instrumentation - Abstract
The Baikal neutrino telescope NT200 takes data since 1998. In 2005, the deployment of three additional strings for common operation with NT200 was finished. We describe the physics program and the design of the new telescope named NT200+ and present selected physical results obtained with NT200. First results from NT200+ will be presented at the conference., Comment: 4 pages, 5 figures, Proceedings of 29th International Cosmic Ray Conference (ICRC) 2005, Pune, India
- Published
- 2006
48. BAIKAL experiment: Main results obtained with the neutrino telescope NT200
- Author
-
A.P. Koshechkin, K.V. Konischev, Yu. A. Semeney, V.A. Balkanov, K.V. Golubkov, V.F. Kulepov, A. I. Panfilov, M.B. Milenin, M.I. Rozanov, S. I. Klimushin, V. Rubtzov, B.A. Tarashansky, G. Pan'kov, P. G. Pokhil, Ya. Davidov, V. A. Poleschuk, I. A. Belolaptikov, S.V. Fialkovsky, D. Borschov, A. A. Pavlov, R. Vasiliev, V. A. Zhukov, L. B. Bezrukov, N. M. Budnev, A. Kochanov, R. R. Mirgazov, D. P. Petukhov, O. N. Gaponenko, A. A. Doroshenko, E.G. Popova, O. A. Gress, E. A. Osipova, I. A. Danilchenko, E.N. Pliskovsky, Zh.-A.M. Dzhilkibaev, A. M. Klabukov, V. V. Prosin, L. A. Kuzmichev, S. Mikheyev, B. K. Lubsandorzhiev, I. I. Yashin, R. Wischnewski, V. M. Aynutdinov, A. N. Dyachok, O. G. Grishin, T. I. Gress, A. I. Klimov, Ch. Spiering, A. V. Shirokov, L. V. Pankov, T. Mikolajski, B. A. M. Shaibonov, and G.V. Domogatsky
- Subjects
Physics ,Nuclear and High Energy Physics ,Solar neutrino ,Astrophysics (astro-ph) ,Neutrino telescope ,FOS: Physical sciences ,Astronomy ,Astrophysics ,Solar neutrino problem ,Particle detector ,Neutrino detector ,ddc:530 ,Neutrino astronomy ,Neutrino ,Instrumentation ,Lepton - Abstract
The Baikal Neutrino Telescope NT200 takes data since April 1998. On April 9th, 2005, the 10 Mton scale detector NT200$+$ was put into operation in Lake Baikal. Selected results obtained during 1998-2002 with the neutrino telescope NT200 are presented., 6 pages, 7 figures, presented at 2nd VLVNT Workshop on Very Large Volume Neutrino Telescope (VLVNT2), Catania, Italy, 8-11 Nov. 2005
- Published
- 2006
49. TAIGA experiment: present status and perspectives
- Author
-
A. Chiavassa, V. Prosin, A. N. Dyachok, Aleksey Zagorodnikov, K. G. Kompaniets, M. Slunecka, V. Samoliga, Ch. Spiering, Aleksandr Gafarov, Grigory Rubtsov, N. N. Kalmykov, A. A. Petrukhin, A. A. Silaev, A. V. Tkachenko, R. D. Monkhoev, T. I. Gress, Martin Tluczykont, A. V. Skurikhin, R. Nachtigall, E.G. Popova, V. A. Poleschuk, R. R. Mirgazov, Evgenii V Rjabov, V.A. Tabolenko, Yu. Lemeshev, Oleg Fedorov, A. Ivanova, L. G. Sveshnikova, L. Tkachev, T. Huege, B.A. Tarashansky, S. Kiryuhin, A. Borodin, A. Pakhorukov, Evgeny Postnikov, Dieter Horns, L. V. Pankov, A. Grinyuk, I. I. Astapov, F.G. Schröder, E. A. Kravchenko, M. Brückner, E. E. Korosteleva, Bayarto Lubsandorzhiev, R. P. Kokoulin, Ralf Wischnewski, Razmik Mirzoyan, E. A. Osipova, L. A. Kuzmichev, V. V. Lenok, Valery Zurbanov, A. Porelli, Pavel Bezyazeekov, O. G. Grishin, A. Sidorenkov, V. Boreyko, Yu. Semeney, Dmitry Zhurov, M. Popesku, V. S. Ptuskin, Mikhail Panasyuk, Dmitriy Kostunin, O. A. Gress, V. A. Kozhin, V. V. Kindin, A. Haungs, N. B. Lubsandorzhiev, A. Pushnin, M. Kunnas, Victor Grebenyuk, Y. Kazarina, Andrey Sokolov, N. M. Budnev, Y. Sagan, and I. V. Yashin
- Subjects
Physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Measure (physics) ,Astronomy ,Cosmic ray ,Electron ,01 natural sciences ,Observatory ,0103 physical sciences ,High Energy Physics::Experiment ,010306 general physics ,Instrumentation ,Mathematical Physics ,Cherenkov radiation - Abstract
The TAIGA observatory addresses ground-based gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV . TAIGA will be located in the Tunka valley, ~ 50 km West from Lake Baikal. The different detectors of the TAIGA will be grouped in 6 arrays to measure Cherenkov and radio emission as well as electron and muon components of atmospheric showers. The combination of the wide angle Cherenkov detectors of the TAIGA-HiSCORE array and the 4-m Imaging Atmospheric Cherenkov Telescopes of the TAIGA-IACT array with their FoV of 10×10 degrees and underground muon detectors offers a very cost effective way to construct a 5 km2 array for gamma-ray astronomy.
- Published
- 2017
50. Hardware and first results of TUNKA-HiSCORE
- Author
-
M. Brückner, R. D. Monkhoev, M. Büker, Aleksey Zagorodnikov, Dieter Horns, A. N. Dyachok, A. Porelli, L. G. Sveshnikova, Bayarto Lubsandorzhiev, V. Prosin, E. E. Korosteleva, R. Wischnewski, A. Ivanova, D. Spitschan, Yu. A. Semeney, V. A. Poleschuk, Gavin Rowell, O. A. Gress, A. Pakhorukov, Grigory Rubtsov, P Satunin, R. Nachtigall, E. Konstantinov, M. Kunnas, O. Chvalaev, M. Tluczykont, N. M. Budnev, U. Einhaus, D. Hampf, R. R. Mirgazov, S. Epimakhov, and L. A. Kuzmichev
- Subjects
Physics ,Nuclear and High Energy Physics ,COSMIC cancer database ,Physics::Instrumentation and Detectors ,business.industry ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Cosmic ray ,Cherenkov Telescope Array ,law.invention ,Air shower ,law ,ddc:530 ,business ,Instrumentation ,Computer hardware ,Cherenkov radiation - Abstract
As a non-imaging wide-angle Cherenkov air shower detector array with an area of up to 100 km 2 , the HiSCORE (Hundred⁎i Square km Cosmic ORigin Explorer) detector concept allows measurements of gamma rays and cosmic rays in an energy range of 10 TeV up to 1 EeV. In the framework of the Tunka-HiSCORE project we have started measurements with a small prototype array, and planned to build an engineering array (1 km 2 ) on the site of the Tunka experiment in Siberia. The first results and the most important hardware components are presented here.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.