45 results on '"V E Hamilton"'
Search Results
2. Mid-infrared emissivity of partially dehydrated asteroid (162173) Ryugu shows strong signs of aqueous alteration
- Author
-
M. Hamm, M. Grott, H. Senshu, J. Knollenberg, J. de Wiljes, V. E. Hamilton, F. Scholten, K. D. Matz, H. Bates, A. Maturilli, Y. Shimaki, N. Sakatani, W. Neumann, T. Okada, F. Preusker, S. Elgner, J. Helbert, E. Kührt, T.-M. Ho, S. Tanaka, R. Jaumann, and S. Sugita
- Subjects
Science - Abstract
Spectral characteristics can be used to link asteroid and meteorite materials. Here, the authors show in-situ mid-infrared data of a boulder on asteroid Ryugu, compared with laboratory spectra of various meteorites, indicate that Ryugu experienced strong aqueous alteration prior to dehydration.
- Published
- 2022
- Full Text
- View/download PDF
3. Mapping Phyllosilicates on the Asteroid Bennu Using Thermal Emission Spectra and Machine Learning Model Applications
- Author
-
L B Breitenfeld, A D Rogers, T D Glotch, H H Kaplan, V E Hamilton, and P R Christensen
- Subjects
Astrophysics - Abstract
Bennu, the target of the OSIRIS-REx mission, is an asteroid with compositions analogous to low petrologic type CI, CM, CR, and/or ungrouped carbonaceous chondrites. Asteroids like Bennu provide information about the building blocks of the early Solar System. Analysis of the mid-infrared remote sensing data informs mineral quantification. We apply a phyllosilicate specific model, developed by Breitenfeld et al. (2021) that distinguishes between Mg and Fe serpentines, to Baseball Diamond 1 (BBD1), Equatorial Station 3 (EQ3), and Touch-And-Go OSIRIS-REx Thermal Emission Spectrometer data. The average total phyllosilicate predictions are 73 (BBD1) and 72 vol% (EQ3). We observe higher Fe-cronstedtite and lower Mg-rich serpentine content in the equatorial region of Bennu than average. Mid-infrared spectral variability may be explained by sorting effects through mass movement.
- Published
- 2022
- Full Text
- View/download PDF
4. Global geologic map of asteroid (101955) Bennu indicates heterogeneous resurfacing in the past 500,000 years
- Author
-
E R Jawin, T J McCoy, K J Walsh, H C Connolly, R-L Ballouz, A J Ryan, H H Kaplan, M Pajola, V E Hamilton, O S Barnouin, J P Emery, B Rozitis, D N DellaGiustina, M G Daly, C A Bennett, D R Golish, M E Perry, R T Daly, E B Bierhaus, M C Nolan, H L Enos, and D S Lauretta
- Subjects
Lunar And Planetary Science And Exploration ,Astronomy - Abstract
Global geologic maps are useful tools for efficient interpretation of a planetary body, and they provide global context for the diversity and evolution of the surface. We used data acquired by the OSIRIS-REx spacecraft to create the first global geologic map of the near-Earth asteroid (101955) Bennu. As this is the first geologic map of a small, non-spherical, rubble-pile asteroid, we discuss the distinctive mapping challenges and best practices that may be useful for future exploration of similar asteroids, such as those to be visited with the Hera and Janus missions. By mapping on two centimeter-scale global image mosaics (2D projected space) and a centimeter-scale global shape model (3D space), we generated three input maps respectively describing Bennu’s shape features, geologic features, and surface texture. Based on these input maps, we defined two geologic units: the Smooth Unit and the Rugged Unit. The units are differentiated primarily on the basis of surface texture, concentrations of boulders, and the distributions of lineaments, mass movement features, and craters. They are bounded by several scarps. The Rugged Unit contains abundant boulders and signs of recent mass movement. It also has fewer small(<20 m), putatively fresh craters than the Smooth Unit, suggesting that such craters have been erased in the former. Based on these geologic indicators, we infer that the Rugged Unit has the younger surface of the two. Differential crater size-frequency distributions and the distribution of the freshest craters suggest that both unit surfaces formed ~10–65 million years ago, when Bennu was located in the Main Asteroid Belt, and the Smooth Unit has not been significantly resurfaced in the past 2 million years. Meanwhile, the Rugged Unit has experienced resurfacing within the past ~500,000years during Bennu’s lifetime as a near-Earth asteroid. The geologic units are consistent with global diversity in slope, surface roughness, normal albedo, and thermal emission spectral characteristics. The site on Bennu where the OSIRIS-REx mission collected a regolith sample is located in the Smooth Unit, in a small crater nested within a larger one. So although the Smooth Unit is an older surface than the Rugged Unit, the impact-crater settingindicates that the material sampled was recently exposed. Several similarities are apparent between Bennu and asteroid (162173) Ryugu from a global geologic perspective, including two geologic units distinguishable by variations in the number density of boulders, as well as in other datasets such as brightness.
- Published
- 2022
- Full Text
- View/download PDF
5. Addendum: “Meteoritic evidence for a Ceres-sized water-rich carbona-ceous chondrite parent asteroid'
- Author
-
V E Hamilton, C A Goodritch, A H Treiman, H C Connolly Jr, M E Zolensky, and M H Shaddad
- Subjects
Geosciences (General) - Abstract
In this paper we present mineralogical and geochemical evidence forprograde metamorphism on a previously unrecognized, large (~640 – 1800km diameter) carbonaceous chondrite (CC) parent body from Almahata Sitta(AhS) 202 (C-ung), a clast in the AhS polymict meteorite. It has been drawnto our attention that some of the mineralogical textures shown in our figuresmay be inadequately described for the non-specialist reader, so here weprovide a clarifying figure and discussion.
- Published
- 2021
- Full Text
- View/download PDF
6. Hydrogen Abundance and Distribution on (101955) Bennu
- Author
-
A. Praet, M. A. Barucci, B. E. Clark, H. H. Kaplan, A. A. Simon, V. E. Hamilton, J. P. Emery, E. S. Howell, L. F. Lim, X.-D. Zou, J.-Y. Li, D. C. Reuter, F. Merlin, J. D. P. Deshapriya, S. Fornasier, P. H. Hasselmann, G. Poggiali, S. Ferrone, J. R. Brucato, D. Takir, E. Cloutis, H. C. Connolly Jr, M. Fulchignoni, and D. S. Lauretta
- Subjects
Astronomy - Abstract
Asteroids were likely a major source of volatiles and water to early Earth. Quantifying the hydration of asteroids is necessary to constrain models of the formation and evolution of the Solar System and the origin of Life on Earth. The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission showed that near-Earth asteroid (101955) Bennu contains widespread, abundant hydrated phyllosilicates, indicated by a ubiquitous absorption at ~ 2.7 μm. The objective of this work is to quantify the hydration—that is, the hydrogen content—of phyllosilicates on Bennu's surface and investigate how this hydration varies spatially. We analyse spectral parameters (normalized optical path length, NOPL; effective single-scattering albedo, ESPAT; and Gaussian modeling) computed from the hydrated phyllosilicate absorption band of spatially resolved visible–near-infrared spectra acquired by OVIRS (the OSIRIS-REx Visible and InfraRed Spectrometer). We also computed the same spectral parameters using laboratory-measured spectra of meteorites including CMs, CIs, and the ungrouped C2 Tagish Lake. We estimate the mean hydrogen content of water and hydroxyl groups in hydrated phyllosilicates on Bennu's surface to be 0.71 ± 0.16 wt%. This value is consistent with the hydration range of some aqueously altered meteorites (CMs, C2 Tagish Lake), but not the most aqueously altered group (CIs). The sample collection site of the OSIRIS-REx mission has slightly higher hydrogen content than average. Spatial variations in hydrogen content on Bennu's surface are linked to geomorphology, and may have been partially inherited from its parent body.
- Published
- 2021
- Full Text
- View/download PDF
7. Spectral Characterization of Bennu Analogs Using PASCALE: A New Experimental Set‐Up for Simulating the Near‐Surface Conditions of Airless Bodies
- Author
-
K. L. Donaldson Hanna, N. E. Bowles, T. J. Warren, V. E. Hamilton, D. L. Schrader, T. J. McCoy, J. Temple, A. Clack, S. Calcutt, and D. S. Lauretta
- Published
- 2021
- Full Text
- View/download PDF
8. Weak Spectral Features on (101995) Bennu from the OSIRIS-REx Visible and InfraRed Spectrometer
- Author
-
A A Simon, H H Kaplan, E Cloutis, V E Hamilton, C Lantz, D C Reuter, D Trang, S Fornasier, B E Clark, and D S Lauretta
- Subjects
Astronomy - Abstract
Context. The NASA Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) mission has obtained thousands of spectra of asteroid (101955) Bennu with the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS). Aims. We present a spectral search for minor absorption bands and determine compositional variations on the surface of Bennu. Methods. Reflectance spectra with low and high spatial resolutions were analyzed for evidence of weak absorption bands. Spectra were also divided by a global average spectrum to isolate unique spectral features, and variations in the strongest band depths were mapped on a surface shape model. The global visible to near-IR spectrum of Bennu shows evidence of several weak absorption bands with depths of a few percent. Results. Several observed bands are consistent with phyllosilicates, and their distribution correlates with the stronger 2.74-μm hydration band. A 0.55-μm band is consistent with iron and is deepest in the spectrally reddest areas on Bennu. The presence of hydrated phyllosilicates and iron oxides indicates substantial aqueous alteration in Bennu’s past. Conclusions. Bennu’s spectra are not identical to a limited set of carbonaceous chondrite spectra, possibly due to compositional properties and spatial scale differences; however, returned samples should contain a mixture of common chondrite materials.
- Published
- 2020
- Full Text
- View/download PDF
9. Variations in color and reflectance on the surface of asteroid (101955) Bennu
- Author
-
D. N. DellaGiustina, K. N. Burke, K. J. Walsh, P. H. Smith, D. R. Golish, E. B. Bierhaus, R.-L. Ballouz, T. L. Becker, H. Campins, E. Tatsumi, K. Yumoto, S. Sugita, J. D. Prasanna Deshapriya, E. A. Cloutis, B. E. Clark, A. R. Hendrix, A. Sen, M. M. Al Asad, M. G. Daly, D. M. Applin, C. Avdellidou, M. A. Barucci, K. J. Becker, C. A. Bennett, W. F. Bottke, J. I. Brodbeck, H. C. Connolly Jr, M. Delbo, J. de Leon, C.Y. Drouet d’Aubigny, K. L. Edmundson, S. Fornasier, V. E. Hamilton, P. H. Hasselmann, C. W. Hergenrother, E. S. Howell, E. R. Jawin, H. H. Kaplan, L. Le Corre, L. F. Lim, J.Y. Li, P. Michel, J. L. Molaro, M. C. Nolan, J. Nolau, M. Pajola, A. Parkinson, M. Popescu, N. A. Porter, B. Rizk, J. L. Rizos, A. J. Ryan, B. Rozitis, N. K. Shultz, A. A. Simon, D. Trang, R. B. Van Auken, C. W. V. Wolner, and D. S. Lauretta
- Subjects
Astronomy ,Lunar And Planetary Science And Exploration - Abstract
Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. Here we present multispectral images (0.44 to 0.89 micrometers) of near-Earth asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet region (i.e., become bluer at shorter wavelengths), then brighten in the visible to near-infrared region, leading to Bennu’s moderately blue average color. Craters indicate that the time scale of these color changes is ~105 years. We attribute the reflectance and color variation to a combination of primordial heterogeneity and varying exposure ages.
- Published
- 2020
- Full Text
- View/download PDF
10. Heterogeneous mass distribution of the rubble-pile asteroid (101955) Bennu
- Author
-
D. J. Scheeres, A. S. French, P. Tricarico, S. R. Chesley, Y. Takahashi, D. Farnocchia, J. W. McMahon, D. N. Brack, A. B. Davis, R.-L. Ballouz, E. R. Jawin, B. Rozitis, J. P. Emery, A. J. Ryan, R. S. Park, B. P. Rush, N. Mastrodemos, B. M. Kennedy, J. Bellerose, D. P. Lubey, D. Velez, A. T. Vaughan, J. M. Leonard, J. Geeraert, B. Page, P. Antreasian, E. Mazarico, K. Getzandanner, D. Rowlands, M. C. Moreau, J. Small, D. E. Highsmith, S. Goossens, E. E. Palmer, J. R. Weirich, R. W. Gaskell, O. S. Barnouin, M. G. Daly, J. A. Seabrook, M. M. Al Asad, L. C. Philpott, C. L. Johnson, C. M. Hartzell, V. E. Hamilton, P. Michel, K. J. Walsh, M. C. Nolan, and D. S. Lauretta
- Published
- 2020
- Full Text
- View/download PDF
11. Asteroid (101955) Bennu’s Weak Boulders and Thermally Anomalous Equator
- Author
-
B Rozitis, A J Ryan, J P Emery, P R Christensen, V E Hamilton, A A Simon, D C Reuter, M Al Asad, R-L Ballouz, J L Bandfield, O S Barnouin, C A Bennett, M Bernacki, K N Burke, S Cambioni, B E Clark, M G Daly, M Delbo, D N DellaGiustina, C M Elder, R D Hanna, C W Haberle, E S Howell, D R Golish, E R Jarwin, H H Kaplan, L F Lim, J L Molaro, D Pino Munoz, M C Nolan, B Rizk, M A Siegler, H C M Susorney, K J Walsh, and D S Lauretta
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Thermal inertia and surface roughness are proxies for the physical characteristics of planetary surfaces. Global maps of these two propertiesdistinguish the boulder population on near-Earth asteroid (NEA) (101955)Bennuinto two typesthat differ in strength,andboth havelower thermal inertiathan expectedfor boulders and meteorites. Neither has strongly temperature-dependent thermal properties. The weakerbouldertypeprobably would not survive atmospheric entry and thus may not berepresented in the meteorite collection. The maps also show ahigh-thermal-inertia band at Bennu’s equator, which might be explained by processes such as compaction or strength sorting during mass movement, but these explanations are not wholly consistent with other data. Our findings imply that other C-complex NEAs likely have boulderssimilar to those on Bennu,rather than finer-particulate regoliths.A tentative correlation between albedo and thermal inertia of C-complex NEAs may be due to relative abundances of boulder types.
- Published
- 2020
- Full Text
- View/download PDF
12. Exogenic Basalt on Asteroid (101955) Bennu
- Author
-
D N DellaGiustina, H H Kaplan, A A Simon, W F Bottke, C Avdellidou, M Delbo, R-L Ballouz, D R Golish, K J Walsh, M Popescu, H Campins, M A Barucci, G Poggiali, R T Daly, L Le Corre, V E Hamilton, N Porter, E R Jawin, T J McCoy, H C Connolly Jr, J L Rizos Garcia, E Tatsumi, J de Leon, J Licandro, S Fornasier, M G Daly, M M Al Asad, L Philpott, J Seabrook, O S Barnouin, B E Clark, M C Nolan, E S Howell, R P Binzel, B Rizk, D C Reuter, and D S Lauretta
- Subjects
Lunar And Planetary Science And Exploration - Abstract
When rubble-pile asteroid 2008 TC3 impacted Earth on October 7, 2008, the recovered rock fragments indicated that such asteroids can contain exogenic material. However, spacecraft missions to date have only observed exogenous contamination on large, monolithic asteroids that are impervious to collisional disruption. Here we report the presence of meter-scale exogenic boulders on the surface of near-Earth asteroid (101955) Bennu - the 0.5-km, rubble-pile target of the OSIRIS-REx mission which has been spectroscopically linked to the CM carbonaceous chondrite meteorites. Hyperspectral data indicate that the exogenic boulders have the same distinctive pyroxene composition as the howardite-eucrite-diogenite (HED) meteorites that come from (4) Vesta, a 525-km diameter asteroid that has undergone differentiation and extensive igneous processing. Delivery scenarios include the infall of Vesta fragments directly onto Bennu or indirectly onto Bennu’s parent body, where the latter’s disruption created Bennu from a mixture of endogenous and exogenic debris. Our findings demonstrate that rubble-pile asteroids can preserve evidence of inter-asteroid mixing that took place at macroscopic scales well after planetesimal formation ended. Accordingly, the presence of HED-like material on the surface of Bennu provides previously unrecognized constraints on the collisional and dynamical evolution of the inner main belt.
- Published
- 2020
- Full Text
- View/download PDF
13. Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu
- Author
-
D. S. Lauretta, C. D. Adam, A. J. Allen, R.-L. Ballouz, O. S. Barnouin, K. J. Becker, T. Becker, C. A. Bennett, E. B. Bierhaus, B. J. Bos, R. D. Burns, H. Campins, Y. Cho, P. R. Christensen, E. C. A. Church, B. E. Clark, H. C. Connolly, M. G. Daly, D. N. DellaGiustina, C. Y. Drouet d’Aubigny, J. P. Emery, H. L. Enos, S. Freund Kasper, J. B. Garvin, K. Getzandanner, D. R. Golish, V. E. Hamilton, C. W. Hergenrother, H. H. Kaplan, L. P. Keller, E. J. Lessac-Chenen, A. J. Liounis, H. Ma, L. K. McCarthy, B. D. Miller, M. C. Moreau, T. Morota, D. S. Nelson, J. O. Nolau, R. Olds, M. Pajola, J. Y. Pelgrift, A. T. Polit, M. A. Ravine, D. C. Reuter, B. Rizk, B. Rozitis, A. J. Ryan, E. M. Sahr, N. Sakatani, J. A. Seabrook, S. H. Selznick, M. A. Skeen, A. A. Simon, S. Sugita, K. J. Walsh, M. M. Westermann, C. W. V. Wolner, and K. Yumoto
- Subjects
Multidisciplinary - Abstract
Carbonaceous asteroids, such as (101955) Bennu, preserve material from the early Solar System, including volatile compounds and organic molecules. We report spacecraft imaging and spectral data collected during and after retrieval of a sample from Bennu’s surface. The sampling event mobilized rocks and dust into a debris plume, excavating a 9-meter-long elliptical crater. This exposed material is darker, spectrally redder, and more abundant in fine particulates than the original surface. The bulk density of the displaced subsurface material was 500 to 700 kilograms per cubic meter, which is about half that of the whole asteroid. Particulates that landed on instrument optics spectrally resemble aqueously altered carbonaceous meteorites. The spacecraft stored 250 ± 101 grams of material, which will be delivered to Earth in 2023.
- Published
- 2022
- Full Text
- View/download PDF
14. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations
- Author
-
B. L. Ehlmann, K. S. Edgett, B. Sutter, C. N. Achilles, M. L. Litvak, M. G. A. Lapotre, R. Sullivan, A. A. Fraeman, R. E. Arvidson, D. F. Blake, N. T. Bridges, P. G. Conrad, A. Cousin, R. T. Downs, T. S. J. Gabriel, R. Gellert, V. E. Hamilton, C. Hardgrove, J. R. Johnson, S. Kuhn, P. R. Mahaffy, S. Maurice, M. McHenry, P.‐Y. Meslin, D. W. Ming, M. E. Minitti, J. M. Morookian, R. V. Morris, C. D. O'Connell‐Cooper, P. C. Pinet, S. K. Rowland, S. Schröder, K. L. Siebach, N. T. Stein, L. M. Thompson, D. T. Vaniman, A. R. Vasavada, D. F. Wellington, R. C. Wiens, and A. S. Yen
- Published
- 2017
- Full Text
- View/download PDF
15. The unexpected surface of asteroid (101955) Bennu
- Author
-
D. S. Lauretta, D. N. DellaGiustina, C. A. Bennett, D. R. Golish, K. J. Becker, S. S. Balram-Knutson, O. S. Barnouin, T. L. Becker, W. F. Bottke, W. V. Boynton, H. Campins, H. C. Connolly Jr, C. Y. Drouet d’Aubigny, J. P. Dworkin, J. P. Emery, H. L. Enos, V. E. Hamilton, C. W. Hergenrother, E. S. Howell, M. R. M. Izawa, H. H. Kaplan, M. C. Nolan, B. Rizk, H. L. Roper, D. J. Scheeres, P. H. Smith, K. J. Walsh, C. W. V. Wolner, D. E. Highsmith, J. Small, D. Vokrouhlický, N. E. Bowles, E. Brown, K. L. Donaldson Hanna, T. Warren, C. Brunet, R. A. Chicoine, S. Desjardins, D. Gaudreau, T. Haltigin, S. Millington-Veloza, A. Rubi, J. Aponte, N. Gorius, A. Lunsford, B. Allen, J. Grindlay, D. Guevel, D. Hoak, J. Hong, D. L. Schrader, J. Bayron, O. Golubov, P. Sánchez, J. Stromberg, M. Hirabayashi, C. M. Hartzell, S. Oliver, M. Rascon, A. Harch, J. Joseph, S. Squyres, D. Richardson, L. McGraw, R. Ghent, R. P. Binzel, M. M. Al Asad, C. L. Johnson, L. Philpott, H. C. M. Susorney, E. A. Cloutis, R. D. Hanna, F. Ciceri, A. R. Hildebrand, E.-M. Ibrahim, L. Breitenfeld, T. Glotch, A. D. Rogers, B. E. Clark, S. Ferrone, C. A. Thomas, Y. Fernandez, W. Chang, A. Cheuvront, D. Trang, S. Tachibana, H. Yurimoto, J. R. Brucato, G. Poggiali, M. Pajola, E. Dotto, E. Mazzotta Epifani, M. K. Crombie, C. Lantz, J. de Leon, J. Licandro, J. L. Rizos Garcia, S. Clemett, K. Thomas-Keprta, S. Van wal, M. Yoshikawa, J. Bellerose, S. Bhaskaran, C. Boyles, S. R. Chesley, C. M. Elder, D. Farnocchia, A. Harbison, B. Kennedy, A. Knight, N. Martinez-Vlasoff, N. Mastrodemos, T. McElrath, W. Owen, R. Park, B. Rush, L. Swanson, Y. Takahashi, D. Velez, K. Yetter, C. Thayer, C. Adam, P. Antreasian, J. Bauman, C. Bryan, B. Carcich, M. Corvin, J. Geeraert, J. Hoffman, J. M. Leonard, E. Lessac-Chenen, A. Levine, J. McAdams, L. McCarthy, D. Nelson, B. Page, J. Pelgrift, E. Sahr, K. Stakkestad, D. Stanbridge, D. Wibben, B. Williams, K. Williams, P. Wolff, P. Hayne, D. Kubitschek, M. A. Barucci, J. D. P. Deshapriya, S. Fornasier, M. Fulchignoni, P. Hasselmann, F. Merlin, A. Praet, E. B. Bierhaus, O. Billett, A. Boggs, B. Buck, S. Carlson-Kelly, J.Cerna, K. Chaffin, E. Church, M. Coltrin, J. Daly, A. Deguzman, R. Dubisher, D. Eckart, D. Ellis, P. Falkenstern, A. Fisher, M. E. Fisher, P. Fleming, K. Fortney, S. Francis, S. Freund, S. Gonzales, P. Haas, A. Hasten, D. Hauf, A. Hilbert, D. Howell, F. Jaen, N. Jayakody, M. Jenkins, K. Johnson, M. Lefevre, H. Ma, C. Mario, K. Martin, C. May, M. McGee, B. Miller, C. Miller, G. Miller, A. Mirfakhrai, E. Muhle, C. Norman, R. Olds, C. Parish, M. Ryle, M. Schmitzer, P. Sherman, M. Skeen, M. Susak, B. Sutter, Q. Tran, C. Welch, R. Witherspoon, J. Wood, J. Zareski, M. Arvizu-Jakubicki, E. Asphaug, E. Audi, R.-L. Ballouz, R. Bandrowski, S. Bendall, H. Bloomenthal, D. Blum, J. Brodbeck, K. N. Burke, M. Chojnacki, A. Colpo, J. Contreras, J. Cutts, D. Dean, B. Diallo, D. Drinnon, K. Drozd, R. Enos, C. Fellows, T. Ferro, M. R. Fisher, G. Fitzgibbon, M. Fitzgibbon, J. Forelli, T. Forrester, I. Galinsky, R. Garcia, A. Gardner, N. Habib, D. Hamara, D. Hammond, K. Hanley, K. Harshman, K. Herzog, D. Hill, C. Hoekenga, S. Hooven, E. Huettner, A. Janakus, J. Jones, T. R. Kareta, J. Kidd, K. Kingsbury, L. Koelbel, J. Kreiner, D. Lambert, C. Lewin, B. Lovelace, M. Loveridge, M. Lujan, C. K. Maleszewski, R. Malhotra, K. Marchese, E. McDonough, N. Mogk, V. Morrison, E. Morton, R. Munoz, J. Nelson, J. Padilla, R. Pennington, A. Polit, N. Ramos, V. Reddy, M. Riehl, S. Salazar, S. R. Schwartz, S. Selznick, N. Shultz, S. Stewart, S. Sutton, T. Swindle, Y. H. Tang, M. Westermann, D. Worden, T. Zega, Z. Zeszut, A. Bjurstrom, L. Bloomquist, C. Dickinson, E. Keates, J. Liang, V. Nifo, A. Taylor, F. Teti, M. Caplinger, H. Bowles, S. Carter, S. Dickenshied, D. Doerres, T. Fisher, W. Hagee, J. Hill, M. Miner, D. Noss, N. Piacentine, M. Smith, A. Toland, P. Wren, M. Bernacki, D. Pino Munoz, S.-i. Watanabe, S. A. Sandford, A. Aqueche, B. Ashman, M. Barker, A. Bartels, K. Berry, B. Bos, R. Burns, A. Calloway, R. Carpenter, N. Castro, R. Cosentino, J. Donaldson, J. Elsila Cook, C. Emr, D. Everett, D. Fennell, K. Fleshman, D. Folta, D. Gallagher, J. Garvin, K. Getzandanner, D. Glavin, S. Hull, K. Hyde, H. Ido, A. Ingegneri, N. Jones, P. Kaotira, L. F. Lim, A. Liounis, C. Lorentson, D. Lorenz, J. Lyzhoft, E. M. Mazarico, R. Mink, W. Moore, M. Moreau, S. Mullen, J. Nagy, G. Neumann, J. Nuth, D. Poland, D. C. Reuter, L. Rhoads, S. Rieger, D. Rowlands, D. Sallitt, A. Scroggins, G. Shaw, A. A. Simon, J. Swenson, P. Vasudeva, M. Wasser, R. Zellar, J. Grossman, G. Johnston, M. Morris, J. Wendel, A. Burton, L. P. Keller, L. Mcnamara, S. Messenger, K. Messenger, A. Nguyen, K. Righter, E. Queen, K. Bellamy, K. Dill, S. Gardner, M. Giuntini, B. Key, J. Kissell, D. Patterson, D. Vaughan, B. Wright, R. W. Gaskell, L. Le Corre, J.-Y. Li, J. L. Molaro, E. E. Palmer, M. A. Siegler, P. Tricarico, J. R. Weirich, X.-D. Zou, T. Ireland, K. Tait, P. Bland, S. Anwar, N. Bojorquez-Murphy, P. R. Christensen, C. W. Haberle, G. Mehall, K. Rios, I. Franchi, B. Rozitis, C. B. Beddingfield, J. Marshall, D. N. Brack, A. S. French, J. W. McMahon, E. R. Jawin, T. J. McCoy, S. Russell, M. Killgore, J. L. Bandfield, B. C. Clark, M. Chodas, M. Lambert, R. A. Masterson, M. G. Daly, J. Freemantle, J. A. Seabrook, K. Craft, R. T. Daly, C. Ernst, R. C. Espiritu, M. Holdridge, M. Jones, A. H. Nair, L. Nguyen, J. Peachey, M. E. Perry, J. Plescia, J. H. Roberts, R. Steele, R. Turner, J. Backer, K. Edmundson, J. Mapel, M. Milazzo, S. Sides, C. Manzoni, B. May, M. Delbo, G. Libourel, P. Michel, A. Ryan, F. Thuillet, and B. Marty
- Subjects
Astronomy ,Exobiology - Abstract
NASA’S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine—that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu’s global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5,6,7,8,9,10,11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid’s properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu’s thermal inertia12 and radar polarization ratios13—which indicated a generally smooth surface covered by centimetre-scale particles—resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.
- Published
- 2019
- Full Text
- View/download PDF
16. The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument
- Author
-
P. R. Christensen, V. E. Hamilton, G. L. Mehall, D. Pelham, W. O’Donnell, S. Anwar, H. Bowles, S. Chase, J. Fahlgren, Z. Farkas, T. Fisher, O. James, I. Kubik, I. Lazbin, M. Miner, M. Rassas, L. Schulze, K. Shamordola, T. Tourville, G. West, R. Woodward, and D. Lauretta
- Published
- 2018
- Full Text
- View/download PDF
17. High‐Resolution Thermophysical Analysis of the OSIRIS‐REx Sample Site and Three Other Regions of Interest on Bennu
- Author
-
B. Rozitis, A. J. Ryan, J. P. Emery, M. C. Nolan, S. F. Green, P. R. Christensen, V. E. Hamilton, M. G. Daly, O. S. Barnouin, and D. S. Lauretta
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Abstract
The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) spacecraft sampled asteroid (101955) Bennu on 20 October 2020 and will return the collected regolith to Earth in 2023. Before sample collection, spectral observations of four regions of interest on Bennu's surface were acquired at high spatial resolution (2–9 m per spectrometer spot) to identify the most suitable site for sampling and provide contextual information for the returned sample. In this study, we investigate thermal-infrared (6–50 μm) observations of these four regions, including the site that OSIRIS-REx ultimately sampled, using the Advanced Thermophysical Model with input digital terrain models derived from laser altimetry. From model-to-measurement comparisons, we find that the observed brightness temperatures depend strongly on small-scale topography, local variations in thermal inertia, and the observation phase angle. Thermal inertia mapping reveals spatial variations that distinguish the different boulder types found on Bennu. A boulder bearing carbonate veins has higher thermal inertia than average, suggesting that cementation processes reduced its porosity. The thermal inertia of the site sampled is 190 ± 30 J m−2 K−1 s−1/2, which is consistent with observations of a fine-grained regolith mixed with porous rocks. Thermophysical modeling of the site sampled predicts that the maximum temperatures experienced by the collected sample while on Bennu were 357 ± 3 and 261 ± 3 K for the surface and 50 cm depth, respectively. We predict that OSIRIS-REx will return a sample with thermophysical properties unique from those of meteorites.
- Published
- 2022
18. Nano‐FTIR Investigation of the CM Chondrite Allan Hills 83100
- Author
-
J. M. Young, T. D. Glotch, M. Yesiltas, V. E. Hamilton, L. B. Breitenfeld, H. A. Bechtel, S. N. Gilbert Corder, and Z. Yao
- Subjects
spectroscopy ,Bioengineering ,Geology ,near-field IR ,Geophysics ,Geochemistry ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Nanotechnology ,OSIRIS-REx ,chondrite ,Astronomical and Space Sciences ,nano-IR ,Hayabusa2 - Abstract
Mid-infrared (MIR) spectroscopy has been used with great success to quantitatively determine the mineralogy of geologic samples. It has been employed in a variety of contexts from determining bulk composition of powdered samples to spectroscopic imaging of rock thin sections via micro-Fourier transform infrared (micro-FTIR) imaging spectroscopy. Recent advances allow for IR measurements at the nanoscale. Near field nanoscale infrared imaging and spectroscopy with a broadband source (nano-FTIR) enable understanding of the spatial relationships between compositionally distinct materials within a sample. This will be of particular use when analyzing returned samples from Bennu and Ryugu, which are thought to be compositionally like CI or CM1/2 carbonaceous chondrites. Returned samples will likely contain olivine/pyroxene chondrules that have been transformed into hydrous phyllosilicates, sulfides, carbonates, and other alteration phases. The use of near-field infrared techniques to probe the boundaries between once pristine chondrules and alteration phases at the nanoscale is a novel approach to furthering our understanding of the compositional evolution of carbonaceous asteroids and the processes that drive their evolution. Here we report the results of nano-FTIR spectroscopy and imaging measurements performed on the carbonaceous chondrite Allan Hills (ALH) 83100 (CM1/2). We show with nanoscale resolution that spatially resolved Fe-Mg variations exist within the phyllosilicates around a chondrule rim. We also present effects of crystal orientation on the nano-FTIR spectra to account for the spectral differences between the meteorite and mineral spectra.
- Published
- 2022
19. The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations
- Author
-
D. S. Lauretta, A. E. Bartels, M. A. Barucci, E. B. Bierhaus, R. P. Binzel, W. F. Bottke, H. Campins, S. R. Chesley, B. C. Clark, B. E. Clark, E. A. Cloutis, H. C. Connolly, M. K. Crombie, M. Delbó, J. P. Dworkin, J. P. Emery, D. P. Glavin, V. E. Hamilton, C. W. Hergenrother, C. L. Johnson, L. P. Keller, P. Michel, M. C. Nolan, S. A. Sandford, D. J. Scheeres, A. A. Simon, B. M. Sutter, D. Vokrouhlický, and K. J. Walsh
- Published
- 2014
- Full Text
- View/download PDF
20. Machine Learning Mid‐Infrared Spectral Models for Predicting Modal Mineralogy of CI/CM Chondritic Asteroids and Bennu
- Author
-
Marina Gemma, Dante S. Lauretta, K. T. Howard, G. Kim, N. J. DiFrancesco, Hanna Nekvasil, A. D. Rogers, Alexander Kling, Timothy D. Glotch, V. E. Hamilton, P. R. Christensen, L. B. Breitenfeld, and Denton S. Ebel
- Subjects
Geophysics ,Modal ,Space and Planetary Science ,Geochemistry and Petrology ,Asteroid ,Earth and Planetary Sciences (miscellaneous) ,Mid infrared ,Astronomy ,Geology - Published
- 2021
- Full Text
- View/download PDF
21. Visible–near-infrared observations of organics and carbonates on (101955) Bennu: Classification method and search for surface context
- Author
-
G. Poggiali, D. C. Reuter, Dante S. Lauretta, Saverio Cambioni, M. A. Barucci, Beth E. Clark, V. E. Hamilton, X. D. Zou, John Robert Brucato, P. H. Hasselmann, Jian-Yang Li, Edward A. Cloutis, S.M. Ferrone, Hannah Kaplan, J. L. Rizos, Amy Simon, J. D. P. Deshapriya, Ithaca College, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), NASA Goddard Space Flight Center (GSFC), Instituto de Astrofisica de Canarias (IAC), Planetary Science Institute [Tucson] (PSI), Université Grenoble Alpes - UFR Arts & Sciences Humaines (UGA UFR ARSH), Université Grenoble Alpes (UGA), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT), California Institute of Technology (CALTECH), University of Manitoba [Winnipeg], Southwest Research Institute [Boulder] (SwRI), and University of Arizona
- Subjects
[PHYS]Physics [physics] ,010504 meteorology & atmospheric sciences ,Spectrometer ,Carbonates ,Mineralogy ,Astronomy and Astrophysics ,Context (language use) ,Albedo ,Stellar classification ,01 natural sciences ,Spectral line ,Impact crater ,Organics ,13. Climate action ,Space and Planetary Science ,Asteroid ,0103 physical sciences ,Bennu ,OSIRIS-REx ,Spectroscopy ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) onboard the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) spacecraft detected ~3.4-μm absorption features indicative of carbonates and organics on near-Earth asteroid (101955) Bennu. We apply a Kolmogorov-Smirnov similarity test to OVIRS spectra of Bennu and laboratory spectra of minerals to categorize 3.4-μm features observed on Bennu as representing either carbonates or organics. Among the 15,585 spectra acquired by OVIRS during high-resolution (4 to 9 m/spectrum footprint) reconnaissance observations of select locations on Bennu's surface, we find 544 spectral matches with carbonates and 245 spectral matches with organics (total of 789 high-confidence spectral matches). We map the locations of these matches and characterize features of Bennu's surface using corresponding image data. Image data are used to quantitatively characterize the albedo within each spectrometer footprint. We find no apparent relationships between spectral classification and surface morphological expression, and we find no correlation between carbon species classification and other spectral properties such as slope or band depth. This suggests either that carbonates and organics are ubiquitous across the surface of Bennu, independent of surface features (consistent with findings from laboratory studies of carbonaceous chondrites), or that the observations do not have the spatial resolution required to resolve differences. However, we find more organic spectral matches at certain locations, including the site from which the OSIRIS-REx mission collected a sample, than at others. Higher concentrations of organics may be explained if these materials have been more recently exposed to surface alteration processes, perhaps by recent crater formation.
- Published
- 2021
- Full Text
- View/download PDF
22. Meteoritic Evidence for a Ceres-sized Water-rich Carbonaceous Chondrite Parent Asteroid
- Author
-
Michael E. Zolensky, A. H. Treiman, V. E. Hamilton, Muawia H. Shaddad, C. A. Goodrich, and Harold C. Connolly
- Subjects
Allende meteorite ,Meteorite ,Asteroid ,Chondrite ,Chemistry ,Carbonaceous chondrite ,Metamorphism ,Astronomy and Astrophysics ,Parent body ,Amphibole ,Article ,Astrobiology - Abstract
Carbonaceous chondrite meteorites record the earliest stages of Solar System geological activities and provide insight into their parent bodies’ histories. Some carbonaceous chondrites are volumetrically dominated by hydrated minerals, providing evidence for low-temperature, low-pressure aqueous alteration1. Others are dominated by anhydrous minerals and textures that indicate high-temperature metamorphism in the absence of aqueous fluids1. Evidence of hydrous metamorphism at intermediate pressures and temperatures in carbonaceous chondrite parent bodies has been virtually absent. Here we show that an ungrouped, aqueously altered carbonaceous chondrite fragment (numbered 202) from the Almahata Sitta (AhS) meteorite contains an assemblage of minerals, including amphibole, that reflect fluid-assisted metamorphism at intermediate temperatures and pressures on the parent asteroid. Amphiboles are rare in carbonaceous chondrites, having only been identified previously as a trace component in Allende (CV3oxA) chondrules2. Formation of these minerals would require prolonged metamorphism in a large (about 640–1,800 kilometres in diameter) asteroid that is as yet unknown. Because Allende and AhS 202 represent different asteroidal parent bodies, intermediate conditions may have been more widespread in the early Solar System than is recognized from known carbonaceous chondrite meteorites, which are likely to represent a biased sampling. The Almahata Sitta 202 meteorite fragment hosts evidence of aqueous alteration at intermediate pressures and temperatures, indicative of a hitherto unknown Ceres-sized parent body. Such intermediate conditions, also seen in the Allende meteorite, might have been more common than our biased meteorite collection indicates.
- Published
- 2021
23. In search of Bennu analogs: Hapke modeling of meteorite mixtures
- Author
-
S. Fornasier, Beth E. Clark, F. Merlin, M. A. Barucci, P. H. Hasselmann, J. D. P. Deshapriya, V. E. Hamilton, Dante S. Lauretta, D. C. Reuter, A. Praet, Devin L. Schrader, Amy Simon, X. D. Zou, J. Y. Li, Centre d'études et de recherches sur les qualifications (CEREQ), ministère de l'Emploi, cohésion sociale et logement-Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Observatorio Nacional [Rio de Janeiro], Ithaca College, Southwest Research Institute [Boulder] (SwRI), NASA Goddard Space Flight Center (GSFC), Planetary Science Institute [Tucson] (PSI), Université Grenoble Alpes - UFR Arts & Sciences Humaines (UGA UFR ARSH), Université Grenoble Alpes (UGA), LAboratoire de Recherche Historique Rhône-Alpes - UMR5190 (LARHRA), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Center for Meteorite Studies [Tempe], Arizona State University [Tempe] (ASU), University of Arizona, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML)
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Infrared spectroscopy ,Astronomy and Astrophysics ,Context (language use) ,Astrophysics ,01 natural sciences ,methods: data analysis ,Spectral line ,Characterization (materials science) ,Absorbance ,Meteorite ,13. Climate action ,Space and Planetary Science ,Chondrite ,Asteroid ,0103 physical sciences ,minor planets ,asteroids: individual: (101955) Bennu ,methods: observational ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,techniques: spectroscopic ,0105 earth and related environmental sciences - Abstract
Context.The OSIRIS-REx Visible and InfraRed Spectrometer onboard the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer spacecraft obtained many spectra from the surface of the near-Earth asteroid (101955) Bennu, enabling the characterization of this primitive small body. Bennu is spectrally similar to the hydrated carbonaceous chondrites (CCs), but questions remain as to which CCs, or combinations thereof, offer the best analogy to its surface.Aims.We aim to understand in more detail the composition and particle size of Bennu’s surface by refining the relationship between this asteroid and various CC meteorites.Methods.We used published absorbance and reflectance data to identify new optical constants for various CC meteorites measured in the laboratory at different temperatures. We then used the Hapke model to randomly generate 1000 synthetic spectra in order to find the combinations of these potential meteoritic analogs that best reproduce the spectral features of the asteroid.Results.Our investigations suggest that the surface of Bennu, though visibly dominated by boulders and coarse rubble, is covered by small particles (tens to a few hundreds of μm) and that possibly dust or powder covers the larger rocks. We further find that the surface is best modeled using a mixture of heated CM, C2-ungrouped, and, to some extent, CI materials.Conclusions.Bennu is best approximated spectrally by a combination of CC materials and may not fall into an existing CC group.
- Published
- 2021
- Full Text
- View/download PDF
24. Author Correction: Shape of (101955) Bennu indicative of a rubble pile with internal stiffness
- Author
-
M. Lefevre, Aaron S. Burton, Carina Bennett, J. A. Mapel, Renu Malhotra, Peter Fleming, J. McAdams, N. Mogk, R. L. Ballouz, P. H. Smith, V. Nifo, C. K. Maleszewski, Timothy D. Swindle, E. Dotto, Stephen R. Schwartz, C. May, J. Bayron, D. Patterson, D. Guevel, Ellen S. Howell, Humberto Campins, J. Kissell, E. Brown, J. Wood, E. Muhle, John Robert Brucato, J. Small, B. Miller, Oleksiy Golubov, R. Pennington, K. Harshman, J. Nelson, Catherine Elder, M. McGee, R. Burns, J. Contreras, S. Hull, D. Kubitschek, D. Noss, Andrew J. Liounis, J. Backer, B. May, G. Fitzgibbon, J. Donaldson, D. Worden, Bashar Rizk, R. Witherspoon, Catherine L. Johnson, Erica Jawin, G. Shaw, A. Aqueche, Dolores H. Hill, D. Folta, S. Ferrone, M. Lujan, Giovanni Poggiali, B. G. Williams, S. Selznick, Melissa A. Morris, K. Rios, Sara S. Russell, D. Lambert, J. Hong, Jeffrey B. Plescia, H. Bloomenthal, D. Drinnon, Olivier S. Barnouin, Derek S. Nelson, Amanda E. Toland, Michael C. Moreau, J. A. Seabrook, K. Dill, A. Mirfakhrai, K. Hyde, J. D. P. Deshapriya, Hannah Kaplan, Timothy P. McElrath, Juliette I. Brodbeck, N. Ramos, S. Stewart, James B. Garvin, Sei-ichiro Watanabe, M. Arvizu-Jakubicki, Jason P. Dworkin, Matthew A. Siegler, Collin Lewin, Masatoshi Hirabayashi, L. Bloomquist, S. Gardner, Keiko Nakamura-Messenger, A. H. Nair, M. Schmitzer, P. Haas, Julie Bellerose, Dolan E. Highsmith, L. Koelbel, C. C. Lorentson, J. Zareski, E. Queen, S. R. Chesley, Philip A. Bland, A. Cheuvront, V. E. Hamilton, Ronald G. Mink, N. Mastrodemos, H. C. Connolly, K. Bellamy, M. Killgore, A. Gardner, Y. Takahashi, M. Lambert, R. C. Espiritu, Z. Zeszut, E. T. Morton, Kevin J. Walsh, Timothy D. Glotch, M. Skeen, Brian Kennedy, Matthew R.M. Izawa, G. Neumann, F. Teti, D. Doerres, A. Hasten, F. Ciceri, D. Howell, A. Deguzman, J. Nagy, D. Vaughan, H. Ma, C. Lantz, D. N. Brack, David K. Hammond, Erwan Mazarico, Leilah K. McCarthy, L. Rhoads, Kathleen L. Craft, C. Welch, Jay W. McMahon, C. L. Parish, D. C. Reuter, M. Giuntini, N. Castro, Clive Dickinson, J. Kreiner, K. Kingsbury, S. Dickenshied, Joseph A. Nuth, Alan R. Hildebrand, Erik Asphaug, H. Ido, Eric M. Sahr, A. Harbison, Arlin E. Bartels, T. Forrester, D. Eckart, R. Bandrowski, Michael K. Barker, Robert Gaskell, J. Wendel, S. Freund, Marc Bernacki, Ryan S. Park, A. Taylor, E. B. Bierhaus, S. Millington-Veloza, J. Stromberg, L. B. Breitenfeld, K. Stakkestad, D. Ellis, Timothy J. McCoy, M. Susak, Richard G. Cosentino, C. Manzoni, Hisayoshi Yurimoto, C. Drouet d'Aubigny, A. Bjurstrom, Masako Yoshikawa, S. Francis, J. Peachey, J. Geeraert, K. Marchese, O. Billett, M. Rascon, F. Jaen, B. Diallo, Martin Miner, Kris J. Becker, E. Mazzotta Epifani, Florian Thuillet, A. Knight, James H. Roberts, Pasquale Tricarico, Edward A. Cloutis, T. Fisher, Dale Stanbridge, A. Colpo, Osiris-Rex Team, S. Gonzales, Q. Tran, M. K. Crombie, John Marshall, N. Bojorquez-Murphy, David Vokrouhlický, Allen W. Lunsford, H. Bowles, K. L. Edmundson, R. A. Masterson, Peter G. Antreasian, N. Gorius, Benjamin Rozitis, D. Pino Muñoz, S. Carlson-Kelly, C. Thayer, J. Elsila Cook, B. C. Clark, N. Piacentine, José C. Aponte, M. Al Asad, M. A. Barucci, D. Blum, P. Falkenstern, Neil Bowles, Matthew Chojnacki, J. M. Leonard, J. Daly, K. Yetter, M. R. Fisher, Jeffrey N. Grossman, A. Boggs, N. Jayakody, Cristina A. Thomas, C.M. Ernst, Namrah Habib, J. N. Kidd, R. J. Steele, Andrew B. Calloway, Andrew Ryan, Kimberly T. Tait, Paul O. Hayne, J. Y. Li, K. L. Berry, William V. Boynton, Yanga R. Fernandez, D. A. Lorenz, M. Wasser, Daniel J. Scheeres, K. Fortney, A. Scroggins, B. Allen, B. Sutter, T. Ferro, Jonathan Joseph, Derek C. Richardson, D. Hoak, Brian Carcich, W. Chang, P. Wren, C. Boyles, Kaj E. Williams, B. Marty, J. Liang, J. Hoffman, A. Harch, Daniel R. Wibben, Jamie Molaro, S. Rieger, R. Enos, C. W. Hergenrother, Stephen R. Sutton, J. Grindlay, E. J. Lessac-Chenen, E. Huettner, C. Norman, P. Sherman, L. Swanson, M. Coltrin, S. Van wal, B. Buck, A. Fisher, Kevin Righter, Brian Rush, David D. Rowlands, Lauren McGraw, A. Levine, K. Drozd, D. Gaudreau, A. Nguyen, S. Sides, M. Chodas, R. Dubisher, B. Ashman, Michael Caplinger, Amy Simon, W. Moore, S. S. Balram-Knutson, R. Carpenter, S. Fornasier, Shogo Tachibana, Russell Turner, Ian A. Franchi, Trevor Ireland, Chloe B. Beddingfield, D. F. Everett, M. Corvin, Lindsay P. Keller, Tammy L. Becker, S. Carter, J. L. Rizos Garcia, Mark E. Perry, E. Keates, Michael C. Nolan, P. Vasudeva, C. Fellows, K. Herzog, Mark A. Jenkins, J. R. Weirich, J. Swenson, D. R. Golish, Davide Farnocchia, Lydia C. Philpott, Rebecca R. Ghent, Hannah C.M. Susorney, S. W. Squyres, Pedro Hasselmann, J. Hill, Thomas J. Zega, B. Key, Marco Delbo, A. S. French, P. Sánchez, A. Hilbert, J. Y. Pelgrift, R. P. Binzel, L. McNamara, Vishnu Reddy, Michael Daly, Scott Messenger, Daniella DellaGiustina, Maurizio Pajola, Charles Brunet, Joshua L. Bandfield, J. Padilla, A. Janakus, M. Moreau, R. Garcia, R. A. Chicoine, P. Michel, P. Kaotira, K. S. Johnson, J. Forelli, G. Miller, K. Martin, I. Galinsky, S. Desjardins, Naru Hirata, Christine Hartzell, M. L. Jones, S. Hooven, D. Velez, R. Munoz, Carolyn M. Ernst, C. Emr, N. Martinez-Vlasoff, S. Bendall, R. Zellar, E. Church, Theodore Kareta, T. Warren, P. Wolff, V. Morrison, C. Bryan, S. Bhaskaran, N. Jones, D. Hauf, Jeremy Bauman, R. T. Daly, R. Olds, M. M. Westermann, D. K. Hamara, E. Audi, G. Johnston, Eric Palmer, Courtney Mario, Daniel P. Glavin, T. Haltigin, J. Cutts, Javier Licandro, Xiao-Duan Zou, H. L. Roper, Gregory A. Neumann, William M. Owen, S. Sugita, Y. H. Tang, Kevin Burke, H. L. Enos, D. Gallagher, William F. Bottke, K. Getzandanner, Philip R. Christensen, C. W. V. Wolner, K. Fleshman, D. Poland, J. P. Emery, M.M. Riehl, D. Fennell, D. Sallitt, A. D. Rogers, M. Fitzgibbon, John H. Jones, S. Mullen, S. Salazar, S. Oliver, A. T. Polit, J. Cerna, A. Praet, Mark E. Holdridge, E. M. Ibrahim, Coralie D. Adam, J. de León, Christopher J. Miller, M. Ryle, J. Lyzhoft, M. Loveridge, C. Hoekenga, Brent J. Bos, S. Anwar, K. Chaffin, Devin L. Schrader, B. Lovelace, Romy D. Hanna, C. D. Adam, G. L. Mehall, K. L. Donaldson Hanna, F. Merlin, B. Wright, Guy Libourel, L. F. Lim, N. Shultz, Dante S. Lauretta, K. Hanley, Beth E. Clark, L. Le Corre, K. Thomas-Keprta, Moses Milazzo, W. Hagee, B. Page, M. Fisher, E. McDonough, D. Trang, S. Clemett, A. Rubi, A. Ingegneri, Scott A. Sandford, D. Dean, J. Freemantle, Michael D. Smith, Christopher W. Haberle, L. Nguyen, M. Fulchignoni, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL), Centre de Mise en Forme des Matériaux (CEMEF), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,010504 meteorology & atmospheric sciences ,Rubble ,Stiffness ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,[SDU]Sciences of the Universe [physics] ,engineering ,medicine ,General Earth and Planetary Sciences ,Geotechnical engineering ,medicine.symptom ,Pile ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
International audience
- Published
- 2020
- Full Text
- View/download PDF
25. Variations in color and reflectance on the surface of asteroid (101955) Bennu
- Author
-
Kevin J. Walsh, N. Shultz, Jian-Yang Li, L. F. Lim, K. N. Burke, Michael Daly, S. Sugita, Erica Jawin, Juliette I. Brodbeck, Dante S. Lauretta, Daniella DellaGiustina, Kris J. Becker, Tammy L. Becker, Ben Rozitis, Alexis Parkinson, Beth E. Clark, Jennifer Nolau, Carina Bennett, Amanda R. Hendrix, L. Le Corre, P. Michel, Bashar Rizk, C. W. V. Wolner, Pedro Hasselmann, Ronald-Louis Ballouz, Carl Hergenrother, David Trang, Marco Delbo, Sonia Fornasier, N. A. Porter, Eri Tatsumi, Daniel M. Applin, M. A. Barucci, C. Drouet d'Aubigny, Michael C. Nolan, Antara Sen, Maurizio Pajola, C. Avdellidou, Edward A. Cloutis, Koki Yumoto, Ellen S. Howell, J. D. Prasanna Deshapriya, Marcel Popescu, V. E. Hamilton, J. L. Rizos, Hannah Kaplan, Dathon Golish, K. L. Edmundson, Amy Simon, R. B. Van Auken, William F. Bottke, Andrew Ryan, Harold C. Connolly, M. Al Asad, Jamie Molaro, J. D. De Leon, E. B. Bierhaus, P. H. Smith, Humberto Campins, Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Southwest Research Institute [Boulder] (SwRI), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Surface (mathematics) ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Multispectral image ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astrophysics ,01 natural sciences ,Reflectivity ,Texture (geology) ,Space weathering ,Wavelength ,Impact crater ,13. Climate action ,Asteroid ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The complex history of Bennu's surface The near-Earth asteroid (101955) Bennu is a carbon-rich body with a rubble pile structure, formed from debris ejected by an impact on a larger parent asteroid. The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft is designed to collect a sample of Bennu's surface and return it to Earth. After arriving at Bennu, OSIRIS-REx performed a detailed survey of the asteroid and reconnaissance of potential sites for sample collection. Three papers present results from those mission phases. DellaGiustina et al. mapped the optical color and albedo of Bennu's surface and established how they relate to boulders and impact craters, finding complex evolution caused by space weathering processes. Simon et al. analyzed near-infrared spectra, finding evidence for organic and carbonate materials that are widely distributed across the surface but are most concentrated on individual boulders. Kaplan et al. examined more detailed data collected on the primary sample site, called Nightingale. They identified bright veins with a distinct infrared spectrum in some boulders, which they interpreted as being carbonates formed by aqueous alteration on the parent asteroid. Together, these results constrain Bennu's evolution and provide context for the sample collected in October 2020. Science , this issue p. eabc3660 , p. eabc3522 , p. eabc3557
- Published
- 2020
- Full Text
- View/download PDF
26. Exogenic basalt on asteroid (101955) Bennu
- Author
-
Javier Licandro, Erica Jawin, M. Al Asad, J. A. Seabrook, Michael C. Nolan, M. A. Barucci, Kevin J. Walsh, Lydia C. Philpott, G. Poggiali, Timothy J. McCoy, R. P. Binzel, Marco Delbo, C. Avdellidou, Dante S. Lauretta, Marcel Popescu, J. L. Rizos Garcia, D. C. Reuter, Ellen S. Howell, Daniella DellaGiustina, Humberto Campins, Bashar Rizk, William F. Bottke, Hannah Kaplan, Amy Simon, Harold C. Connolly, Eri Tatsumi, V. E. Hamilton, M. G. Daly, Olivier S. Barnouin, Beth E. Clark, L. Le Corre, N. A. Porter, J. de León, Ronald-Louis Ballouz, R. T. Daly, Dathon Golish, Sonia Fornasier, Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and ANR-18-CE31-0014,ORIGINS,A la recherche des planétésimaux de notre système solaire(2018)
- Subjects
Basalt ,Planetesimal ,010504 meteorology & atmospheric sciences ,Astronomy and Astrophysics ,01 natural sciences ,Parent body ,Astrobiology ,Igneous rock ,Planetary science ,Meteorite ,13. Climate action ,Asteroid ,[SDU]Sciences of the Universe [physics] ,Carbonaceous chondrite ,0103 physical sciences ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
When rubble-pile asteroid 2008 TC3 impacted Earth on 7 October 2008, the recovered rock fragments indicated that such asteroids can contain exogenic material1,2. However, spacecraft missions to date have only observed exogenous contamination on large, monolithic asteroids that are impervious to collisional disruption3,4. Here, we report the presence of metre-scale exogenic boulders on the surface of near-Earth asteroid (101955) Bennu—the 0.5-km-diameter, rubble-pile target of the OSIRIS-REx mission5 that has been spectroscopically linked to the CM carbonaceous chondrite meteorites6. Hyperspectral data indicate that the exogenic boulders have the same distinctive pyroxene composition as the howardite–eucrite–diogenite (HED) meteorites that come from (4) Vesta, a 525-km-diameter asteroid that has undergone differentiation and extensive igneous processing7–9. Delivery scenarios include the infall of Vesta fragments directly onto Bennu or indirectly onto Bennu’s parent body, where the latter’s disruption created Bennu from a mixture of endogenous and exogenic debris. Our findings demonstrate that rubble-pile asteroids can preserve evidence of inter-asteroid mixing that took place at macroscopic scales well after planetesimal formation ended. Accordingly, the presence of HED-like material on the surface of Bennu provides previously unrecognized constraints on the collisional and dynamical evolution of the inner main belt. Six bright boulders of exotic material on near-Earth asteroid (101955) Bennu stand out from the average asteroidal surface. This unexpected record of impactors offers clues to the formation history of Bennu.
- Published
- 2020
- Full Text
- View/download PDF
27. Distinguishing relative aqueous alteration and heating among CM chondrites with IR spectroscopy
- Author
-
Ashley J. King, Jon M. Friedrich, Romy D. Hanna, V. E. Hamilton, Christopher W. Haberle, and N. M. Abreu
- Subjects
Materials science ,Aqueous solution ,Olivine ,010504 meteorology & atmospheric sciences ,Infrared ,Analytical chemistry ,Infrared spectroscopy ,Astronomy and Astrophysics ,Pyroxene ,engineering.material ,01 natural sciences ,Meteorite ,Space and Planetary Science ,Chondrite ,0103 physical sciences ,engineering ,Spectroscopy ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
Using infrared (IR) spectroscopy of thin sections, we characterize the relative degree of aqueous alteration and subsequent heating of a suite of CM chondrites to document spectral indicators of these processes that can contextualize observations of carbonaceous asteroids. We find that the progressive aqueous alteration of CMs manifests in two spectral regions. The low-wavenumber region (1200–400 cm−1; 8–25 μm) records the increasing proportion of Mg-Fe phyllosilicates relative to anhydrous silicates as aqueous alteration proceeds, with a highly correlated shift of the Christiansen feature (CF) to lower wavenumber and the Si-O bending band minimum to higher wavenumber, and an increase in depth of the Mg-OH band (~625 cm−1). The strongest correlation (R2 = 0.90) with petrologic subtype is the distance between the CF and Si-O stretching band minimum, which predicts the petrologic subtype of the sample to within 0.1. The high-wavenumber region (4000–2500 cm−1, ≤3.33 μm) probes the variation in abundance and composition of Mg-Fe serpentine and tochilinite among the altered CMs. All moderately to highly altered CMs (≤2.3) have an OH/H2O (‘3 μm’) band emission maximum of 3690 cm−1 (2.71 μm) indicative of Mg-bearing serpentine, and mildly aqueously altered CMs (≥ 2.5) have a wider band with a complex shape that results from contributions of Fe-bearing serpentine and tochilinite. Among weakly heated CMs (Stage II; 300–500 °C), the low-wavenumber region exhibits spectral features resulting from the dehydration and dehydroxylation of phyllosilicates that include broadening of the Si-O stretching band and a shift of its minimum to lower wavenumber, and the disappearance of the Mg-OH band. The location of the Si-O bending band minimum appears to be unaffected by mild heating. Extensively heated CMs (Stage III+; > 500 °C) have a low-wavenumber region dominated by the spectral features of secondary, Fe-bearing olivine and low-Ca pyroxene and thus are readily distinguished from unheated and mildly heated CMs. The OH/H2O band of all heated CMs is broad and rounded with an emission peak at lower wavenumbers (≤3636 cm−1; ≥2.75 μm) than in unheated CMs. However, spectral and petrographic evidence suggests that our heated CMs have been compromised by terrestrial rehydration. Our study confirms that thermal metamorphism effects are concentrated within the matrix and suggests that the matrix of the CM WIS 91600 had a CI-like mineralogy prior to heating.
- Published
- 2020
28. OSIRIS-REx spectral analysis of (101955) Bennu by multivariate statistics
- Author
-
P. Michel, Ellen S. Howell, John Robert Brucato, S. Ferrone, Giovanni Poggiali, Frederic Merlin, J. D. P. Deshapriya, Jian-Yang Li, Josh Emery, Daniella DellaGiustina, M. Fulchignoni, Dante S. Lauretta, Pedro Hasselmann, Amy Simon, A. Praet, X. D. Zou, Beth E. Clark, Edward A. Cloutis, Sonia Fornasier, V. E. Hamilton, M. A. Barucci, D. C. Reuter, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Ithaca College, NASA Goddard Space Flight Center (GSFC), Southwest Research Institute [Boulder] (SwRI), Northern Arizona University [Flagstaff], Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), Department of Geography [Winnipeg], University of Winnipeg, Planetary Science Institute [Tucson] (PSI), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Fisica e Astronomia [Firenze], and Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)
- Subjects
Physics ,geography ,Multivariate statistics ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Sampling (statistics) ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Space weathering ,Regolith ,Spectral line ,Space and Planetary Science ,Asteroid ,Ridge ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,Spectral slope ,minor planets ,asteroids: individual: (101955) Bennu ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
Contact.The NASA New Frontiers asteroid sample return mission Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) has provided a large amount of data on the asteroid (101955) Bennu, including high-quality spectra obtained by the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS).Aims.To better constrain the surface properties and compositional variations of Bennu, we studied the visible and near-infrared spectral behavior across the asteroid surface by means of a statistical analysis aiming to distinguish spectrally distinct groups, if present.Methods.We applied theG-mode multivariate statistical analysis to the near-infrared OVIRS spectra to obtain an automatic statistical clustering at different confidence levels.Results.The statistical analysis highlights spectral variations on the surface of Bennu. Five distinct spectral groups are identified at a 2σconfidence level. At a higher confidence level of 3σ, no grouping is observed.Conclusions.The results at a 2σconfidence level distinguish a dominant spectral behavior group (group 1, background) and four small groups showing spectral slope variations, associated with areas with different surface properties. The background group contains most of the analyzed data, which implies a globally homogeneous surface at the spectral and spatial resolution of the data. The small groups with redder spectra are concentrated around the equatorial ridge and are associated with morphological surface features such as specific craters and boulders. No significant variation is detected in the band area or depth of the 2.74μm band, which is associated with hydrated phyllosilicate content. The spectral slope variations are interpreted as a consequence of different regolith particle sizes, and/or porosity, and/or space weathering, that is, the presence of more or less fresh material. The OSIRIS-REx mission primary sampling site, Nightingale, and a boulder known as the Roc, are redder than the background surface.
- Published
- 2020
- Full Text
- View/download PDF
29. Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history
- Author
-
J. A. Seabrook, H. L. Enos, Timothy D. Glotch, Daniel P. Glavin, Michael Daly, Daniella DellaGiustina, S. Ferrone, Hannah Kaplan, V. E. Hamilton, D. C. Reuter, Xiao-Duan Zou, K. N. Burke, Timothy J. McCoy, Beth E. Clark, Amy Simon, Jian-Yang Li, Scott A. Sandford, Dathon Golish, N. A. Porter, Dante S. Lauretta, Romy D. Hanna, Josh Emery, Jason P. Dworkin, K. Ishimaru, Erica Jawin, Harold C. Connolly, Humberto Campins, Carina Bennett, and Olivier S. Barnouin
- Subjects
Solar System ,chemistry.chemical_compound ,Multidisciplinary ,Impact crater ,Meteorite ,chemistry ,Asteroid ,Carbonaceous chondrite ,Carbonate ,Geology ,Parent body ,Hydrothermal circulation ,Astrobiology - Abstract
The complex history of Bennu's surface The near-Earth asteroid (101955) Bennu is a carbon-rich body with a rubble pile structure, formed from debris ejected by an impact on a larger parent asteroid. The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft is designed to collect a sample of Bennu's surface and return it to Earth. After arriving at Bennu, OSIRIS-REx performed a detailed survey of the asteroid and reconnaissance of potential sites for sample collection. Three papers present results from those mission phases. DellaGiustina et al. mapped the optical color and albedo of Bennu's surface and established how they relate to boulders and impact craters, finding complex evolution caused by space weathering processes. Simon et al. analyzed near-infrared spectra, finding evidence for organic and carbonate materials that are widely distributed across the surface but are most concentrated on individual boulders. Kaplan et al. examined more detailed data collected on the primary sample site, called Nightingale. They identified bright veins with a distinct infrared spectrum in some boulders, which they interpreted as being carbonates formed by aqueous alteration on the parent asteroid. Together, these results constrain Bennu's evolution and provide context for the sample collected in October 2020. Science , this issue p. eabc3660 , p. eabc3522 , p. eabc3557
- Published
- 2020
30. Composition of organics on asteroid (101955) Bennu
- Author
-
Daniel P. Glavin, Sonia Fornasier, Michelle S. Thompson, Dante S. Lauretta, Humberto Campins, M. A. Barucci, D. C. Reuter, X. D. Zou, Hannah Kaplan, Scott A. Sandford, Jason P. Dworkin, Josh Emery, John Robert Brucato, Edward A. Cloutis, V. E. Hamilton, Beth E. Clark, and Amy Simon
- Subjects
Physics ,Infrared spectroscopy ,chemistry.chemical_element ,Astronomy and Astrophysics ,Context (language use) ,Astrophysics ,Space weathering ,Spectral line ,Astrobiology ,Meteorite ,chemistry ,Space and Planetary Science ,Asteroid ,Absorption (electromagnetic radiation) ,Carbon - Abstract
Context. The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission detected an infrared absorption at 3.4 μm on near-Earth asteroid (101955) Bennu. This absorption is indicative of carbon species, including organics, on the surface. Aims. We aim to describe the composition of the organic matter on Bennu by investigating the spectral features in detail. Methods. We use a curated set of spectra acquired by the OSIRIS-REx Visible and InfraRed Spectrometer that have features near 3.4 μm (3.2 to 3.6 μm) attributed to organics. We assess the shapes and strengths of these absorptions in the context of laboratory spectra of extraterrestrial organics and analogs. Results. We find spectral evidence of aromatic and aliphatic CH bonds. The absorptions are broadly consistent in shape and depth with those associated with insoluble organic matter in meteorites. Given the thermal and space weathering environments on Bennu, it is likely that the organics have not been exposed for long enough to substantially decrease the H/C and destroy all aliphatic molecules.
- Published
- 2021
- Full Text
- View/download PDF
31. Considering the formation of hematite spherules on Mars by freezing aqueous hematite nanoparticle suspensions
- Author
-
Barry R. Bickmore, M. E. Elwood Madden, A. S. Elwood Madden, M. R. Sexton, Andrew L. Swindle, and V. E. Hamilton
- Subjects
Meridiani Planum ,Aqueous solution ,Materials science ,010504 meteorology & atmospheric sciences ,Ice crystals ,Nanoparticle ,Astronomy and Astrophysics ,Weathering ,Hematite ,010502 geochemistry & geophysics ,01 natural sciences ,law.invention ,Chemical engineering ,Space and Planetary Science ,law ,visual_art ,visual_art.visual_art_medium ,Particle ,Crystallization ,0105 earth and related environmental sciences - Abstract
The enigmatic and unexpected occurrence of coarse crystalline (gray) hematite spherules at Terra Meridiani on Mars in association with deposits of jarosite-rich sediments fueled a variety of hypotheses to explain their origin. In this study, we tested the hypothesis that freezing of aqueous hematite nanoparticle suspensions, possibly produced from low-temperature weathering of jarosite-bearing deposits, could produce coarse-grained hematite aggregate spherules. We synthesized four hematite nanoparticle suspensions with a range of sizes and morphologies and performed freezing experiments. All sizes of hematite nanoparticles rapidly aggregate during freezing. Regardless of the size or shape of the initial starting material, they rapidly collect into aggregates that are then too big to push in front of a stable advancing ice front, leading to incohesive masses of particles, rather than solid spherules. We also explored the effects of “seed” silicates, a matrix of sand grains, various concentrations of NaCl and CaCl 2 , and varying the freezing temperature on hematite nanoparticle aggregation. However, none of these factors resulted in mm-scale spherical aggregates. By comparing our measured freezing rates with empirical and theoretical values from the literature, we conclude that the spherules on Mars could not have been produced through the freezing of aqueous hematite nanoparticle suspensions; ice crystallization front instability disrupts the aggregation process and prevents the formation of mm-scale continuous aggregates.
- Published
- 2017
- Full Text
- View/download PDF
32. 82nd Annual Meeting of The Meteoritical Society (2019)
- Author
-
E. C. Brown, Neil Bowles, V. E. Hamilton, Osiris-Rex Team, A. D. Rogers, K. L. Donaldson Hanna, Dante S. Lauretta, and Beth E. Clark
- Subjects
Geophysics ,Thermal infrared ,Materials science ,Space and Planetary Science ,0103 physical sciences ,010306 general physics ,010303 astronomy & astrophysics ,01 natural sciences ,Remote sensing - Published
- 2019
- Full Text
- View/download PDF
33. Evidence for limited compositional and particle size variation on asteroid (101955) Bennu from thermal infrared spectroscopy
- Author
-
C. A. Goodrich, Amy Simon, John Robert Brucato, Beth E. Clark, Philip R. Christensen, Hannah Kaplan, Devin L. Schrader, Timothy J. McCoy, Christopher W. Haberle, Romy D. Hanna, Dante S. Lauretta, L. B. Breitenfeld, V. E. Hamilton, A. D. Rogers, Timothy D. Glotch, and Cateline Lantz
- Subjects
Physics ,Thermal Emission Spectrometer ,010504 meteorology & atmospheric sciences ,Astronomy and Astrophysics ,Context (language use) ,Astrophysics ,Stellar classification ,01 natural sciences ,Spectral line ,Space and Planetary Science ,Chondrite ,Asteroid ,Thermal infrared spectroscopy ,0103 physical sciences ,Particle size ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
Context.Asteroid (101955) Bennu is the target of NASA’s Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) mission. The spacecraft’s instruments have characterized Bennu at global and local scales to select a sampling site and provide context for the sample that will be returned to Earth. These observations include thermal infrared spectral characterization by the OSIRIS-REx Thermal Emission Spectrometer (OTES).Aims.To understand the degree of compositional and particle size variation on Bennu, and thereby predict the nature of the returned sample, we studied OTES spectra, which are diagnostic of these properties.Methods.We created and mapped spectral indices and compared them with the distribution of geomorphic features. Comparison to laboratory spectra of aqueously altered carbonaceous chondrites constrains the amount of compositional variability that is observable.Results.The OTES spectra exhibit two end-member shapes (or types), and compositional variability appears limited at the spatial resolution of the observations. The global distribution of these spectral types corresponds with the locations of regions composed of (i) large, dark, relatively rough boulders and (ii) relatively smooth regions lacking large boulders.Conclusions.The two spectral types appear to be diagnostic primarily of particle size variations, with contributions from other properties. The spectra resemble experimental data of solid substrates with very thin accumulations (a few to tens of microns) of fine particles (
- Published
- 2021
- Full Text
- View/download PDF
34. Maximum Rates of Olivine Dissolution on Mars
- Author
-
J D Stopar, G J Taylor, V E Hamilton, L Browning, and D Pickett
- Subjects
Lunar And Planetary Science And Exploration - Abstract
This work is a first step in constraining olivine alteration rates on Mars. By bounding dissolution rates of olivine, we can make inferences about the temporal extent of aqueous alteration on the surface. Several hypothesized low-temperature surface aqueous alteration processes include valley network formation from release of groundwater during impact or gully formation from snow melt, both of which may occur over a period of several thousand years. Outflow channels may have formed during brief floods lasting less than a year. If large bodies of water were present during a warm, wet period, large standing bodies of water may have been present for 104 to 109 years. High-temperature alteration processes include hydrothermal activity associated with impacts and magmatic features. These features may remain active for 104 to 106 years. Table 2 summarizes speculated duration times of these aqueous processes. For comparison, we have determined minimum olivine residence times (time until complete dissolution) for 1 mm diameter particles to range from much less than one year to approximately 5,000 years.
- Published
- 2003
35. Evidence for magmatic evolution and diversity on Mars from infrared observations
- Author
-
Michael B. Wyatt, V. E. Hamilton, Noel Gorelick, Jeffrey E. Moersch, A. D. Rogers, Harry Y. McSween, Hugh H. Kieffer, Joshua L. Bandfield, Michael C. Malin, Bruce M. Jakosky, Philip R. Christensen, and Steven W. Ruff
- Subjects
Basalt ,Multidisciplinary ,Fractional crystallization (geology) ,Thermal Emission Spectrometer ,Infrared ,media_common.quotation_subject ,Geochemistry ,Addendum ,Crust ,Mars Exploration Program ,Astrobiology ,Igneous rock ,Martian surface ,Thermal Emission Imaging System ,Caldera ,Geology ,Diversity (politics) ,media_common - Abstract
Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth. High-resolution imaging of the martian surface has allowed the construction of morphologic maps showing considerable diversity at local and regional scales. However, petrology has not kept pace and so virtually no information exists about mineralogic or geochemical variations at comparable spatial scales. Remote sensing data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and visible/near-infrared (IR) spectroscopy from spacecraft-based and Earth-based telescopes have revealed mineralogic variations between regional-scale units 1–4 , but martian igneous and sedimentary processes almost certainly resulted in much more diversity than is presently recognized. Volcanic units are probably composed of materials formed by different degrees of partial melting and modified by fractional crystallization and interaction with crustal compositions during magma ascent and eruption. Similarly, sedimentary units presumably experienced mineral fractionations during transport and deposition, and erosion, tectonic activity and impact may have excavated different subsurface materials at local scales.
- Published
- 2005
- Full Text
- View/download PDF
36. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
- Author
-
M. A. Meyer, Mark I. Richardson, Robert C. Anderson, Marisa C. Palucis, Sara Navarro Lopez, Rodney C. Ewing, Sanjeev Gupta, Caroline Freissinet, Edward M. Stolper, James F. Bell, M. A. Ravine, I. G. Mitrofanov, Thomas F. Bristow, Dawn Y. Sumner, Joel A. Hurowitz, Robert M. Haberle, Claire E. Newman, Andrew Steele, Muriel Saccoccio, Leslie Keely, E. Pallier, Jason P. Dworkin, Claude Geffroy, Mary A. Voytek, Michael Caplinger, Fred Goesmann, Yann Parot, Maria-Paz Zorzano Mier, A. B. Sanin, S. W. Squyres, Javier Caride Rodriguez, J. L. Griffes, Julio José Romeral-Planello, Jason Feldman, Katherine L. French, V. Sautter, Nicolas Mangold, David L. Bish, Vivian Lafaille, Michael D. Smith, François Raulin, V. Prokhorov, Gilles Berger, S. Slavney, Heather B. Franz, S. Johnstone, Susanne P. Schwenzer, Felipe Gómez, Harri Haukka, Francis A. Cucinotta, J. Hudgins, T. Cleghorn, Pascaline Francois, Alain Lepinette Malvitte, Shuai Li, Paul R. Mahaffy, K. M. Robertson, Bruce M. Jakosky, J. Guo, Juergen Schieber, Rafael Navarro-González, G. J. Flesch, Scott M. McLennan, Jennifer G. Blank, M. Carmosino, Kenneth A. Farley, Yves Langevin, P. D. Archer, A. E. Brunner, M. D. Dyar, S. Le Mouélic, V. Hipkin, Sara Alejandra Sans Fuentes, Kenneth S. Edgett, Sabrina Feldman, Gale Paulsen, Paul Herrera, Alberto G. Fairén, Kirsten L. Siebach, Jan-Peter Muller, M. J. Schoppers, Eldar Noe Dobrea, Nina Lanza, Marc Gailhanou, Genevieve Marchand, Sönke Burmeister, Craig Hardgrove, Justin N. Maki, Ari-Matti Harri, Michael C. Malin, M. J. Wolff, Roger E. Summons, H. Blau, Jacqueline Cameron, Jeff A. Berger, Didier Keymeulen, Agnes Cousin, Guillermo M. Muñoz Caro, Eric Lyness, Cedric Pilorget, Michael B. Baker, Christopher S. Edwards, M. L. Litvak, Brian M. Duston, Rebecca M. E. Williams, T. Nolan, Robert T. Downs, V. E. Hamilton, Walter Goetz, Pamela G. Conrad, J. Baroukh, Nathan T. Bridges, Meenakshi Wadhwa, Roger C. Wiens, Samuel M. Clegg, Philippe Sarrazin, L. Bleacher, Eric Lorigny, Mike Toplis, Michael H. Wong, Timothy H. McConnochie, Ian Mcewan, Kiran Patel, Mary Beth Wilhelm, John P. Grotzinger, Jeffrey E. Moersch, Michael A. Wilson, Mark Paton, I. Plante, Eric Lewin, Franck Poitrasson, Tori M. Hoehler, P. Guillemot, Mackenzie Day, David F. Blake, José Antonio Rodríguez Manfredi, G. W. Lugmair, Robert F. Wimmer-Schweingruber, Dorothy Z. Oehler, Samuel Teinturier, Bent Ehresmann, Jérémie Lasue, K. E. Herkenhoff, Daniel C. Berman, Scott VanBommel, Jeffrey R. Johnson, Emily M. McCullough, A. A. Fraeman, Ezat Heydari, Penelope L. King, K. M. Stack, Diana L. Blaney, A. Salamon, John G. Spray, L. Posiolova, Jeff Hollingsworth, David Choi, Kevin W. Lewis, B. D. Prats, Tonci Balic-Zunic, Mehdi Benna, H. M. Elliott, Jesús Martínez-Frías, R. Mueller-Mellin, William V. Boynton, Lance E. Christensen, Richard Leveille, John A. Grant, David E. Harker, J. M. Morookian, Caleb I. Fassett, S. Jacob, Donald Fay, R. Perez, Horton E. Newsom, Morten Madsen, M. G. Trainer, G. Israel, B. E. Nixon, Claude d’Uston, John E. Moores, Olivier Gasnault, Daniel J. Krysak, Vladislav Tretyakov, G. M. Perrett, Andrew D. Aubrey, L. E. Kirkland, F. Stalport, B. L. Barraclough, Alain Cros, Stephan Böttcher, Michel Cabane, William B. Brinckerhoff, Jack D. Farmer, James J. Wray, P. Y. Meslin, Arnaud Buch, Allan H. Treiman, S. C. R. Rafkin, B. C. Clark, Noureddine Melikechi, R. Jackson, Luther W. Beegle, Angela Lundberg, Bethany L. Ehlmann, William E. Dietrich, Karl Iagnemma, K. Supulver, Radu Popa, R. Zimdar, Melissa Floyd, Wesley T. Huntress, Paul B. Niles, D. M. Delapp, C. N.. Achilles, Darrell Drake, T. Nelson, Alain Gaboriaud, Verónica Peinado-Gonzalez, Edward P. Vicenzi, T. Boucher, Jennifer L. Eigenbrode, C. Tate, David J. Des Marais, F. Javier Martin-Torres, Antoine Charpentier, Chris Webster, Mildred P. Martin, Robert M. Sucharski, Lucy M. Thompson, Cyril Szopa, D. Halleaux, Antonio Molina Jurado, Richard V. Morris, Andrey Vostrukhin, Peter C. Thomas, Ara V. Nefian, Pablo Sobron Sanchez, Manuel de la Torre Juárez, B. Elliott, Hannu Savijärvi, J. Bentz, Sergey Nikiforov, S. Gordon, Shaunna M. Morrison, Jean-Luc Lacour, Günter Reitz, M. E. Newcombe, David E. Brinza, C. Yana, Gary Kocurek, L. J. Lipkaman, C. M. Garcia, Maria Genzer, Fred Calef, A. Godber, Stubbe F. Hviid, C. Donny, T. Van Beek, Ruslan O. Kuzmin, Alexander Hayes, T. S. Olson, George D. Cody, J. Martín-Soler, N. Karpushkina, John Bridges, Mercedes Jiménez, M. Lefavor, Sylvestre Maurice, H. L. K. Manning, Ralph E. Milliken, Susanne Schröder, N. Spanovich, L. J. Edwards, A. Koefoed, Roser Urqui-O'Callaghan, Eduardo Sebastian Martinez, Cary Zeitlin, Noël Stewart, David T. Vaniman, E. A. Breves, Laurent Favot, A. Varenikov, Gérard Manhès, R. B. Williams, David Martin, Steven J. Rowland, E. Boehm, Adrian P. Jones, Alexis Paillet, R. Francis, Sushil K. Atreya, Mariek E. Schmidt, David Baratoux, N. I. Boyd, Qiu-Mei Lee, I. L. ten Kate, Bernard Hallet, K. Stoiber, Vivian Z. Sun, M. R. Kennedy, Gillian M. Krezoski, Mark A. Bullock, T. Stein, Michelle E. Minitti, I. Pradler, Susan L. S. Stipp, Scott Davis, Robert O. Pepin, B. L. Ehlmann, Janne Kauhanen, Dmitry Golovin, Steve J. Chipera, Raymond E. Arvidson, Javier Gómez-Elvira, L. C. Kah, Melissa S. Rice, Isaias Carrasco Blazquez, Cécile Fabre, John J. Simmonds, Joy A. Crisp, Jens Frydenvang, Florence Tan, Julia DeMarines, S. P. Gorevan, Elizabeth B. Rampe, E. McCartney, Lauren DeFlores, K. Harshman, D. N. Harpold, J. Van Beek, Luis Mora-Sotomayor, Douglas W. Ming, Kristen E. Miller, John Campbell, Amy McAdam, L. Saper, Robert Sullivan, Lorenzo Fluckiger, Kjartan M. Kinch, Arik Posner, H. Bower, A. A. Pavlov, D. Scholes, Insoo Jun, Brigitte Gondet, Patrice Coll, Burt Baker, Donald M. Hassler, Ralf Gellert, Laurie A. Leshin, T. Siili, Gilles Dromart, Lauren A. Edgar, Ryan B. Anderson, Robert Dingler, Leon Radziemski, Jean-Baptiste Sirven, G. Weigle, Cynthia K. Little, A. Mezzacappa, Olivier Forni, A. S. Kozyrev, Edward A. Cloutis, Ashwin Vasavada, A. Behar, François Robert, D. M. Rubin, Alexey Malakhov, E. Jensen, T. C. Owen, Sebastien Hettrich, Miguel Ramos, B. Sutter, Melinda A. Kahre, Patrick Pinet, John H. Jones, Claude Brunet, B. Pavri, Nilton O. Renno, Evgeny Atlaskin, Laurent Peret, Maxim Mokrousov, David Lees, J. J. B. Avalos, Jennifer C. Stern, Ann Ollila, Josefina Torres Redondo, Miles J. Johnson, M. A. D. P. Hernandez, Daniel P. Glavin, Albert S. Yen, Christophe Agard, Jouni Polkko, Christopher P. McKay, J. Peterson, Oliver Botta, Mark T. Lemmon, Marion Nachon, K. M. Bean, Bruce A. Cantor, Jan Köhler, M. Fitzgibbon, Carlos Armiens-Aparicio, Jorge Pla-Garcia, Henrik Kahanpää, Frances Westall, Walter Schmidt, M.-H. Kim, Kenneth G. Miller, Sharon A. Wilson, S. McNair, O. Kortmann, David Grinspoon, E. M. Lee, S. Indyk, Osku Kemppinen, E. Raaen, Michael Mischna, R. S. Sletten, James B. Garvin, John M. Ward, R. L. Tokar, Paulo M. Vasconcelos, Charles Malespin, T. J. Parker, Aaron J. Sengstacken, S. Bender, Jean-Pierre Williams, F. Fedosov, Patrick Mauchien, Audrey Dupont, R. A. Yingst, David Coscia, David A. Cremers, Danika Wellington, Kenneth H. Nealson, J. K. Jensen, Martin R. Fisk, J. Joseph, Amy J. Williams, W. Brunner, NASA Johnson Space Center (JSC), NASA, NASA Goddard Space Flight Center (GSFC), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Guelph], University of Guelph, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Space Science and Astrobiology Division at Ames, NASA Ames Research Center (ARC), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Astronomy [Ithaca], Cornell University [New York], Center for Earth and Planetary Studies [Washington] (CEPS), Smithsonian National Air and Space Museum, Smithsonian Institution-Smithsonian Institution, Department of Earth Science and Technology [Imperial College London], Imperial College London, United States Geological Survey [Reston] (USGS), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Rensselaer Polytechnic Institute (RPI), Princeton University, State University of New York (SUNY), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Lunar and Planetary Institute [Houston] (LPI), Planetary Science Institute [Tucson] (PSI), School of Earth and Atmospheric Sciences [Atlanta], Georgia Institute of Technology [Atlanta], Aalto University, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Applied Research Associates, Inc. (ARA), Center for Meteorite Studies [Tempe], Ashima Research, ATOS Origin, Australian National University (ANU), Bay Area Environmental Research Institute (BAER), Big Head Endian LLC, Brock University [Canada], Brown University, Canadian Space Agency (CSA), Capgemini Consulting [Paris], Carnegie Mellon University [Pittsburgh] (CMU), Catholic University of America, Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Chesapeake Energy Corporation, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Interaction Laser Matière (LILM), Concordia College, Moorhead, CS-Systèmes d'Information [Toulouse] (CS-SI), Delaware State University (DSU), Denver Museum of Nature and Science, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Finnish Meteorological Institute (FMI), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Global Science and Technology, Inc., Honeybee Robotics Ltd, Indiana University [Bloomington], Indiana University System, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Jackson State University (JSU), Jacobs Technology ESCG, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Minéralogie et Cosmochimie du Muséum (LMCM), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Space Remote Sensing Group (ISR-2), Malin Space Science Systems (MSSS), Depertment of Polymer Chemistry, Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, DLR Institute of Planetary Research, German Aerospace Center (DLR), NASA Headquarters, Oregon State University (OSU), Search for Extraterrestrial Intelligence Institute (SETI), Smithsonian Institution, Department of Space Studies [Boulder], Southwest Research Institute [Boulder] (SwRI), Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), TechSource Inc., Texas A&M University [College Station], The Open University [Milton Keynes] (OU), University of Arizona, Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), California Institute of Technology (CALTECH)-NASA, Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], University of California [Berkeley], University of California-University of California, Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, Petrology, Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN), and Kruch, Catherine
- Subjects
Geologic Sediments ,010504 meteorology & atmospheric sciences ,Extraterrestrial Environment ,Curiosity rover ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mineralogy ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Sulfides ,01 natural sciences ,organic compositions ,Bassanite ,0103 physical sciences ,Exobiology ,[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Hydrocarbons, Chlorinated ,MSL ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Total organic carbon ,Martian ,mudstone samples ,Volatile Organic Compounds ,Multidisciplinary ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Water ,Mars Exploration Program ,Carbon Dioxide ,Oxygen ,Bays ,13. Climate action ,Rocknest ,Sample Analysis at Mars ,Sedimentary rock ,Pyrolysis - Abstract
H 2 O, CO 2 , SO 2 , O 2 , H 2 , H 2 S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H 2 O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO 2 . Concurrent evolution of O 2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.
- Published
- 2014
- Full Text
- View/download PDF
37. Stereopsis using a large aspheric field lens
- Author
-
A A Burrows and V E Hamilton
- Subjects
Crosstalk ,Stereopsis ,Optics ,Computer science ,business.industry ,Materials Science (miscellaneous) ,Business and International Management ,business ,Industrial and Manufacturing Engineering - Published
- 2010
38. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential Rover Mission for 2018
- Author
-
Michael H. Carr, Daniel P. Glavin, Barbara Sherwood Lollar, Alfred S. McEwen, Frances Westall, Thomas M. McCollom, Ariel D. Anbar, V. E. Hamilton, Carl Allen, Sushil K. Atreya, Abby Allwood, Lisa M. Pratt, D. W. Ming, John Parnell, K. E. Herkenhoff, John A. Grant, Scott M. McLennan, Ralph E. Milliken, Francois Poulet, Vicky Hipkin, Dave Des Marais, G. G. Ori, Centre de biophysique moléculaire (CBM), and Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Meridiani Planum ,010504 meteorology & atmospheric sciences ,Computer science ,BARBERTON MOUNTAIN LAND ,Mars Exploration Program Analysis Group ,Context (language use) ,Sample (statistics) ,RAMAN CROSS-SECTIONS ,010502 geochemistry & geophysics ,01 natural sciences ,Astrobiology ,Martian surface ,Range (aeronautics) ,0105 earth and related environmental sciences ,OMEGA/MARS EXPRESS ,Executive summary ,MAGNETIC-FIELD ,MERIDIANI-PLANUM ,WESTERN-AUSTRALIA ,Mars Exploration Program ,WARRAWOONA GROUP ,Agricultural and Biological Sciences (miscellaneous) ,SOUTH-AFRICA ,Space and Planetary Science ,ONVERWACHT GROUP ,MARTIAN DUST STORMS - Abstract
International audience; Executive Summary This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of 7km (semimajor axis landing ellipse), a mobility range of at least 10km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher (MAX-C) to reflect the dual purpose of this potential 2018 rover mission. A key conclusion is that the capabilities needed to carry out compelling, breakthrough science at the martian surface are the same as those needed to select samples for potential sample return to document their context. This leads to a common rover concept with the following attributes
- Published
- 2010
- Full Text
- View/download PDF
39. The compositional diversity and physical properties mapped from the Mars Odyssey Thermal Emission Imaging System
- Author
-
Robin L. Fergason, V. E. Hamilton, Philip R. Christensen, A. D. Rogers, and Joshua L. Bandfield
- Subjects
Atmosphere ,Planetary science ,visual_art ,visual_art.visual_art_medium ,Noachian ,Hesperian ,Thermal Emission Imaging System ,Hematite ,Space exploration ,Geology ,Tharsis ,Astrobiology - Published
- 2008
- Full Text
- View/download PDF
40. Visible to near-IR multispectral orbital observations of Mars
- Author
-
R. E. Arvidson, T. D. Glotch, A. McEwen, V. E. Hamilton, P. R. Christensen, T. McCord, T. H. McConnochie, and J. F. Bell
- Subjects
Meridiani Planum ,Orbiter ,Planetary science ,law ,Thermal Emission Imaging System ,Mineralogy ,Mars Exploration Program ,Dust devil ,Geology ,High Resolution Stereo Camera ,VNIR ,law.invention ,Astrobiology - Abstract
This chapter reviews observations and interpretations since the 1990s from orbital telescopic and spacecraft observations of Mars from the extended visible to short-wave near-IR (VNIR) wavelength range. Imaging and spectroscopic measurements from the Hubble Space Telescope (HST), Mars Global Surveyor Mars Orbiter Camera Wide Angle (MGS MOC/WA) instrument, Mars Odyssey Thermal Emission Imaging System Visible Subsystem (THEMIS-VIS), and Mars Express High Resolution Stereo Camera (MEx HRSC) and Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) have been acquired at spatial scales from global-scale ∼ 1 to hundreds of kilometers resolution to regional-scale ∼ 20–100 m resolution. Most high-albedo regions are homogeneous in color and thus, likely, composition, a supposition consistent with the long-held idea of the presence of a globally homogeneous aeolian dust unit covering much of the surface. Despite the presence and ubiquity of dust, these measurements still reveal the presence of significant VNIR spectral variability at a variety of spatial scales. For example, color variations and possibly mineralogic variations have been detected among small-scale (tens of meters) exposures of light-toned outcrop and layered materials in Meridiani Planum, Valles Marineris, and other areas. Within low-albedo regions, much of the observed color variability appears simply related to different amounts of covering or coating by nanophase ferric oxide-bearing dust and/or ferrous silicate-bearing sand. Some VNIR color units, however, in regions spanning the full range of observed surface albedos, correlate with geologic, topographic, or thermal inertia boundaries, suggesting that either composition/mineralogy or variations in physical properties (e.g., grain size, roughness, packing density) influence the observed color.
- Published
- 2008
- Full Text
- View/download PDF
41. Global mineralogy mapped from the Mars Global Surveyor Thermal Emission Spectrometer
- Author
-
Joshua L. Bandfield, Michael B. Wyatt, A. D. Rogers, Glotch R. T. D., V. E. Hamilton, Philip R. Christensen, and Steven W. Ruff
- Subjects
Meridiani Planum ,Thermal Emission Spectrometer ,Noachian ,Mineralogy ,Mars Exploration Program ,engineering.material ,Hematite ,Mars Orbiter Laser Altimeter ,visual_art ,Pigeonite ,engineering ,visual_art.visual_art_medium ,Plagioclase ,Geology - Abstract
The Thermal Emission Spectrometer (TES) on Mars Global Surveyor (MGS) mapped the surface, atmosphere, and polar caps of Mars from 1997 through 2006. TES provided the first global mineral maps of Mars, and showed that the surface is dominated by primary volcanic minerals (plagioclase feldspar, pyroxene, and olivine) along with high-silica, poorly crystalline materials. Differences in the abundances of these minerals were initially grouped into two broad compositional categories that correspond to basalt and basaltic andesite. Additional analysis has identified four surface compositional groups that are spatially coherent, revealing variations in the composition of the primary crust-forming magmas through time. In general, plagioclase, high-Ca clinopyroxene, and high-silica phases are the dominant mineral groups for most regions, with lesser amounts of orthopyroxene, olivine, and pigeonite. One of the fundamental results from the TES investigation was the identification of several large deposits of crystalline hematite, including those in Meridiani Planum, that were interpreted to indicate the presence of liquid water for extended periods of time. This interpretation led to the selection of Meridiani as the target for the Opportunity rover, the first time that a planetary landing site was selected on the basis of mineralogic information. Aqueous weathering may have formed some of the high-silica phases seen in TES spectra at high latitudes, and the Mars Express Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) spectrometer has detected phyllosilicates and sulfates, typically formed by aqueous weathering and deposition, in several locations.
- Published
- 2008
- Full Text
- View/download PDF
42. Patent Reviews: 3,478,277, 3,479,117, 3,478,662, 3,476,934, 3,478,210, 3,480,875, 3,480,369, 3,483,385, 3,479,620, 3,485,546, 3,485,547, 3,485,552, 3,305,294, 3,393,617, 3,471,701, 3,473,878, 3,474,249, 3,475,078, 3,475,099
- Author
-
N. S. Kapany, R. S. Hunter, J. J. J. Staunton, B. J. Howell, W. Wojcik, S. F. Jacobs, E. Manring, E. J. W. Moore, A. Mann, R. Kingslake, E. D. Palik, C. Shepard, E. F. Du Pré, D. E. Carter, R. L. Hilliard, D. L. Wood, M. Laikin, C. B. Rubinstein, P. Baumeister, J. R. Meyer-Arendt, T. K. McCubbin, L. S. Birks, D. E. Williamson, M. S. Lipsett, J. J. Ball, R. L. Barns, D. C. Harper, G. W. Cleek, D. J. Lovell, S. K. Tchejeyan, J. W. Nielsen, W. L. Hyde, L. O. Vargady, C. F. Mooney, W. G. Driscoll, P. D. Call, L. Elsner, V. E. Hamilton, P. R. Wakeling, and H. Shenker
- Subjects
Engineering ,Optics ,business.industry ,Materials Science (miscellaneous) ,Business and International Management ,business ,Telecommunications ,Industrial and Manufacturing Engineering - Published
- 1970
- Full Text
- View/download PDF
43. Patent Reviews: 3,409,429; 3,413,067; 3,414,345; 3,421,809; 3,413,460; 3,419,330; 3,433,555; 3,434,073; 3,434,779; 3,436,678; 3,437,942; 3,437,952; 3,442,566; 3,442,570; 3,443,243; 3,444,316; 3,446,561; 3,447,856; 3,448,284; 3,449,042; 3,449,053; 3,450,018; 3,450,469; 3,450,476; 3,450,478; 3,451,742; 3,451,755; 3,452,296; 3,452,657; 3,453,036; 3,453,037; 3,453,038; 3,453,043; 3,453,048; 3,453,106; 3,454,330; 3,453,442; 3,454,340; 3,454,341; 3,454,711; 3,454,768; 3,454,771; 3,454,778; 3,454,885; 3,455,622; 3,455,625; 3,455,627; 3,455,683; 3,456,998; 3,457,003; 3,457,071; 3,457,365; 3,457,419; 3,457,451; 3,458,244; 3,458,247; 3,458,249; 3,458,257; 3,458,259; 3,458,744; 3,458,829; 3,459,111; 3,460,882; 3,460,887; 3,461,856; 3,467,473; 3,472,593
- Author
-
D. E. Williamson, R. L. Hilliard, C. F. Mooney, J. J. Ball, B. J. Howell, E. J. W. Moore, R. L Barns, R. S. Hunter, J. W. Nielsen, P. Baumeister, W. L. Hyde, E. D. Palik, L S. Birks, S. F. Jacobs, C. B. Rubinstein, P. D. Call, N. S. Kapany, H. Shenker, D. E. Carter, R. Kingslake, C. Shepard, G. W. Cleek, M. Laikin, J. J. J. Staunton, W. G. Driscoll, M. S. Lipsett, S. K. Tchejeyan, E. F. Du Pré, D. J. Lovell, L. O. Vargady, L. Eisner, E. Manring, P. R. Wakeling, V. E. Hamilton, T. K. McCubbin, W. Wojcik, D. C. Harper, A. Mann, D. L. Wood, and J. R. Meyer-Arendt
- Subjects
Materials Science (miscellaneous) ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 1970
- Full Text
- View/download PDF
44. Patent Reviews: 3,316,088; 3,357,830; 3,415,587; 3,421,011; 3,423,522; 3,431,411; 3,432,241; 3,433,963; 3,434,077; 3,434,778; 3,436,159; 3,437,411; 3,437,412
- Author
-
E. F. Du Pré, M. Laikin, C. B. Rubinstein, D. E. Carter, E. J. W. Moore, N. S. Kapany, E. D. Palik, W. L. Hyde, D. E. Williamson, R. L. Barns, L. O. Vargady, J. J. J. Staunton, R. Kingslake, D. J. Lovell, D. L. Wood, S. F. Jacobs, J. R. Meyer-Arendt, T. K. McCubbin, C. Shepard, D. C. Harper, R. S. Hunter, W. Wojcik, G. W. Cleek, S. K. Tchejeyan, M. S. Lipsett, L. S. Birks, J. J. Ball, B. J. Howell, P. Baumeister, P. R. Wakeling, H. Shenker, C. F. Mooney, W. G. Driscoll, P. D. Call, L. Eisner, R. L. Hilliard, V. E. Hamilton, E. Manring, and J. W. Nielsen
- Subjects
Engineering ,Optics ,Patent troll ,business.industry ,Materials Science (miscellaneous) ,Business and International Management ,business ,Industrial and Manufacturing Engineering ,Law and economics - Published
- 1970
- Full Text
- View/download PDF
45. Patent Reviews: 3,468,598; 3,473,866; 3,474,253; 3,476,026; 3,476,457; 3,476,459; 3,476,461; 3,476,462; 3,477,776; 3,478,661; 3,479,510; 3,481,664; 3,481,666; 3,482,102; 3,482,900; 3,482,902; 3,484,152; 3,485,549; 3,485,550; 3,485,551; 3,485,554; 3,485,557
- Author
-
W. Wojcik, R. Kingslake, N. S. Kapany, J. J. J. Staunton, D. E. Carter, E. F. Du Pré, M. Laikin, C. B. Rubinstein, B. J. Howell, P. R. Wakeling, H. Shenker, T. K. McCubbin, J. W. Nielsen, D. J. Lovell, E. Manring, M. S. Lipsett, P. Baumeister, R. L. Hilliard, J. J. Ball, D. C. Harper, V. E. Hamilton, D. E. Williamson, L. O. Vargady, D. L. Wood, C. Shepard, S. F. Jacobs, R. S. Hunter, A. Mann, G. W. Cleek, C. F. Mooney, W. G. Driscoll, S. K. Tchejeyan, P. D. Call, W. L. Hyde, L. S. Birks, L. Elsner, J. R. Meyer-Arendt, R. L. Barns, E. J. W. Moore, and E. D. Palik
- Subjects
Materials science ,Optics ,Patent troll ,business.industry ,Materials Science (miscellaneous) ,Business and International Management ,business ,Industrial and Manufacturing Engineering ,Law and economics - Published
- 1970
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.