1. The parasite intraerythrocytic cycle and human circadian cycle are coupled during malaria infection.
- Author
-
Motta FC, McGoff K, Moseley RC, Cho CY, Kelliher CM, Smith LM, Ortiz MS, Leman AR, Campione SA, Devos N, Chaorattanakawee S, Uthaimongkol N, Kuntawunginn W, Thongpiam C, Thamnurak C, Arsanok M, Wojnarski M, Vanchayangkul P, Boonyalai N, Smith PL, Spring MD, Jongsakul K, Chuang I, Harer J, and Haase SB
- Subjects
- Humans, Mice, Animals, Host-Parasite Interactions, Parasites, Malaria parasitology, Plasmodium genetics, Malaria, Vivax
- Abstract
During infections with the malaria parasites Plasmodium vivax , patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In other Plasmodium species that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreira et al. , Science 368 , 746-753 (2020); Smith et al ., Science 368 , 754-759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, because Plasmodium cycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected with P. vivax to examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host-parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling.
- Published
- 2023
- Full Text
- View/download PDF