11 results on '"Usai K"'
Search Results
2. Beyond the chronic pain stage: default mode network perturbation depends on years lived with back pain.
- Author
-
Heukamp NJ, Moliadze V, Mišić M, Usai K, Löffler M, Flor H, and Nees F
- Subjects
- Humans, Female, Male, Adult, Middle Aged, Adaptation, Psychological physiology, Brain physiopathology, Brain diagnostic imaging, Nerve Net physiopathology, Nerve Net diagnostic imaging, Brain Mapping, Chronic Pain physiopathology, Chronic Pain diagnostic imaging, Chronic Pain psychology, Back Pain physiopathology, Back Pain psychology, Back Pain diagnostic imaging, Magnetic Resonance Imaging, Default Mode Network physiopathology, Default Mode Network diagnostic imaging
- Abstract
Abstract: Research has indicated that the default mode network (DMN) is perturbated in patients with chronic pain when compared with healthy controls, and this perturbation is correlated with the duration of pain during the chronic pain stage. It remains unclear whether DMN adaptations manifest during the subacute pain stage and progress over time because of the duration of pain experience, rather than being a specific correlate of the chronic pain stage. Furthermore, information regarding whether these adaptations are related to cognitive processes of adaptation is lacking. To this end, we examined the DMN in 31 patients with chronic back pain (CBP), 77 patients with subacute back pain (SBP), as well as 39 healthy pain-free controls (HC) applying a graph-theoretic network approach on functional resting-state magnetic resonance imaging. Beyond the comparison between groups, we used a linear analysis considering the years lived with pain (YLP) across all patients with back pain and additionally performed a mediation analysis of the role of cognitive pain coping. In line with previous studies, we found significant DMN perturbation in CBP compared with HC. However, this did not apply to the comparison of CBP with SBP. Instead, we observed a positive correlation between DMN perturbation and YLP. This was significantly mediated by coping attitudes towards pain. Default mode network perturbation may thus reflect neural adaptation processes to pain experience rather than a single correlate of the chronic pain stage and be modulated by cognitive adaption. This points to potentially underinvestigated significant adaptation processes that could enable more fine-grained patient stratification., (Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain.)
- Published
- 2025
- Full Text
- View/download PDF
3. Brain white matter pathways of resilience to chronic back pain: a multisite validation.
- Author
-
Mišić M, Lee N, Zidda F, Sohn K, Usai K, Löffler M, Uddin MN, Farooqi A, Schifitto G, Zhang Z, Nees F, Geha P, and Flor H
- Abstract
Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over six- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~ 0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.
- Published
- 2024
- Full Text
- View/download PDF
4. Adolescents' pain-related ontogeny shares a neural basis with adults' chronic pain in basothalamo-cortical organization.
- Author
-
Heukamp NJ, Banaschewski T, Bokde ALW, Desrivières S, Grigis A, Garavan H, Gowland P, Heinz A, Kandić M, Brühl R, Martinot JL, Paillère Martinot ML, Artiges E, Papadopoulos Orfanos D, Lemaitre H, Löffler M, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Usai K, Vaidya N, Walter H, Whelan R, Schumann G, Flor H, and Nees F
- Abstract
During late adolescence, the brain undergoes ontogenic organization altering subcortical-cortical circuitry. This includes regions implicated in pain chronicity, and thus alterations in the adolescent ontogenic organization could predispose to pain chronicity in adulthood - however, evidence is lacking. Using resting-state functional magnetic resonance imaging from a large European longitudinal adolescent cohort and an adult cohort with and without chronic pain, we examined links between painful symptoms and brain connectivity. During late adolescence, thalamo-, caudate-, and red nucleus-cortical connectivity were positively and subthalamo-cortical connectivity negatively associated with painful symptoms. Thalamo-cortical connectivity, but also subthalamo-cortical connectivity, was increased in adults with chronic pain compared to healthy controls. Our results indicate a shared basis in basothalamo-cortical circuitries between adolescent painful symptomatology and adult pain chronicity, with the subthalamic pathway being differentially involved, potentially due to a hyperconnected thalamo-cortical pathway in chronic pain and ontogeny-driven organization. This can inform neuromodulation-based prevention and early intervention., Competing Interests: Dr Banaschewski served in an advisory or consultancy role for Lundbeck, Medice, Neurim Pharmaceuticals, Oberberg GmbH, Shire. He received conference support or speaker’s fee by Lilly, Medice, Novartis and Shire. He has been involved in clinical trials conducted by Shire & Viforpharma. He received royalties from Hogrefe, Kohlhammer, CIP Medien, Oxford University Press. The present work is unrelated to the above grants and relationships. Dr Barker has received honoraria from General Electric Healthcare for teaching on scanner programming courses. Dr Poustka served in an advisory or consultancy role for Roche and Viforpharm and received speaker’s fee by Shire. She received royalties from Hogrefe, Kohlhammer and Schattauer. The present work is unrelated to the above grants and relationships. The other authors report no biomedical financial interests or potential conflicts of interest., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
5. The association of spouse interactions and emotional learning in interference related to chronic back pain.
- Author
-
Nees F, Usai K, Kandić M, Zidda F, Heukamp NJ, Moliadze V, Löffler M, and Flor H
- Abstract
Social interactions affect individual behaviours, preferences, and attitudes. This is also critical in the context of experiencing pain and expressing pain behaviours, and may relate to learned emotional responses. In this respect, individual variability in the medial prefrontal cortex (mPFC), which is involved in adjusting an organism's behaviour to its environment by evaluating and interpreting information within the context of past experiences, is important. It is critical for selecting suitable behavioural responses within a social environment and may reinforce maladaptation in chronic pain. In our study, we used brain imaging during appetitive and aversive pavlovian conditioning in persons with chronic back pain (CBP), subacute back pain (SABP), and healthy controls (HC), together with information on spouse responses to pain behaviours. We also examined the relationship of these responses with pain-related interference in the patients. Our findings yielded a significant negative association between mPFC responses to appetitive and aversive learning in CBP. We also observed a significant negative association for mPFC responses during aversive learning and distracting spouse responses, and a significant positive association between mPFC responses during appetitive learning and solicitous spouse responses in CBP. Both significantly predicted pain-related interference in the CBP group (explained variance up to 53%). Significant associations were not found for SABP or HC. Our findings support an association between appetitive and aversive pavlovian learning, related brain circuits and spouse responses to pain in CBP, where appetitive and aversive learning processes seem to be differentially involved. This can inform prevention and early intervention in a mechanistic approach., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
6. Stress-induced hyperalgesia instead of analgesia in patients with chronic musculoskeletal pain.
- Author
-
Löffler M, Schneider P, Schuh-Hofer S, Kamping S, Usai K, Treede RD, Nees F, and Flor H
- Abstract
Many individuals with chronic musculoskeletal pain (CMP) show impairments in their pain-modulatory capacity. Although stress plays an important role in chronic pain, it is not known if stress-induced analgesia (SIA) is affected in patients with CMP. We investigated SIA in 22 patients with CMP and 18 pain-free participants. Pain thresholds, pain tolerance and suprathreshold pain ratings were examined before and after a cognitive stressor that typically induces pain reduction (SIA). Whereas the controls displayed a significant increase in pain threshold in response to the stressor, the patients with CMP showed no analgesia. In addition, increased pain intensity ratings after the stressor indicated hyperalgesia (SIH) in the patients with CMP compared to controls. An exploratory analysis showed no significant association of SIA or SIH with spatial pain extent. We did not observe significant changes in pain tolerance or pain unpleasantness ratings after the stressor in patients with CMP or controls. Our data suggest that altered stress-induced pain modulation is an important mechanism involved in CMP. Future studies need to clarify the psychobiological mechanisms of these stress-induced alterations in pain processing and determine the role of contributing factors such as early childhood trauma, catastrophizing, comorbidity with mental disorders and genetic predisposition., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
7. Identification and quantification of potential microplastics in shellfish harvested in Sardinia (Italy) by using transillumination stereomicroscopy.
- Author
-
Lorenzoni G, Melillo R, Mudadu AG, Piras G, Cau S, Usai K, Corda L, Salza S, Tedde T, Vodret B, Virgilio S, and Meloni D
- Abstract
Plastics are non-biodegradable polymers made up of different groups of petrochemical materials. Several biotic and abiotic factors can change the density of plastic fragmenting it and originating microplastics (MPs). MPs have been defined as small pieces of plastic less than 5 mm in size. Due to their small size, they are an emerging concern in the marine environment since they can be ingested by aquatic organisms, especially filter-feeding organisms, such as bivalve mollusks. Impacts of MPs exposure have been shown at various levels of biological organization, from cellular to tissue to individual and population levels. For example, oxidative stress and inflammation have been observed in copepods and mussels, obstruction and physical damage of the digestive tract were found in fish and swimming behavior alterations, disruption of foraging and feeding behavior and overall reduced fitness and survival were observed in fish and oysters. In addition, MPs can act as a vector for the transfer of chemicals to marine biota. The aim of the present study was the identification and quantification of potential MPs in shellfish harvested in Sardinia (Italy) by using transillumination stereomicroscopy. Bivalves were collected from 4 of the main production areas located along the Sardinian coast and selected according to the principles of the risk assessment. The results of the present study demonstrated the presence of potential MPs in 70% of the analyzed samples: the presence of MPs in bivalve mollusks may pose a threat to food safety, and there is an urgent need to evaluate the potential risks of MPs to human health., Competing Interests: Conflict of interest: The authors declare no potential conflict of interest., (©Copyright: the Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
8. Corticostriatal circuits in the transition to chronic back pain: The predictive role of reward learning.
- Author
-
Löffler M, Levine SM, Usai K, Desch S, Kandić M, Nees F, and Flor H
- Subjects
- Humans, Magnetic Resonance Imaging, Nucleus Accumbens diagnostic imaging, Prefrontal Cortex diagnostic imaging, Back Pain diagnostic imaging, Reward
- Abstract
Connectivity between the nucleus accumbens (NAc) and ventromedial prefrontal cortex (vmPFC) and reward learning independently predict the transition from acute to chronic back pain (CBP). However, how these predictors are related remains unclear. Using functional magnetic resonance imaging, we investigate NAc- and vmPFC-dependent reward learning in 50 patients with subacute back pain (SABP) and follow them over 6 months. Additionally, we compare 29 patients with CBP and 29 pain-free controls to characterize mechanisms of reward learning in the chronic stage. We find that the learning-related updating of the value of reinforcement (prediction error) in the NAc predicts the transition to chronicity. In CBP, compared with controls, vmPFC responses to this prediction error signal are decreased, but increased during a discriminative stimulus. Distinct processes of reward learning in the vmPFC and NAc characterize the development and maintenance of CBP. These could be targeted for the prevention and treatment of chronic pain., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
9. Oxytocin modulates intrinsic neural activity in patients with chronic low back pain.
- Author
-
Schneider I, Schmitgen MM, Boll S, Roth C, Nees F, Usai K, Herpertz SC, and Wolf RC
- Subjects
- Amygdala, Humans, Magnetic Resonance Imaging, Male, Oxytocin pharmacology, Chronic Pain diagnostic imaging, Chronic Pain drug therapy, Low Back Pain diagnostic imaging, Low Back Pain drug therapy
- Abstract
Background: Modulation of pain perception by oxytocin (OXT) has attracted increased scientific and clinical interest. Neural mechanisms underlying these effects are poorly understood. In this study, we aimed to investigate the effects of intranasally applied OXT on intrinsic neural activity in patients with chronic low back pain (cLBP)., Methods: Twenty-four male patients with cLBP and 23 healthy males were examined using resting-state functional magnetic resonance imaging. Participants were scanned twice and received either intranasally applied OXT (24 international units) or placebo 40 min before scanning. The fractional amplitude of low-frequency fluctuations (fALFF) was computed to investigate regionally specific effects of OXT on intrinsic neural activity. In addition a multivariate statistical data analysis strategy was employed to explore OXT-effects on functional network strength., Results: Differential effects of OXT were observed in cLBP and healthy controls. FALFF decreased in left nucleus accumbens and right thalamus in cLBP and increased in right thalamus in healthy controls after OXT application compared to placebo. OXT also induced activity changes in bilateral thalamus, left caudate nucleus and right amygdala in cLBP. OXT was associated with increased medial frontal, parietal and occipital functional network strength, though this effect was not group-specific. Regression analyses revealed significant associations between left nucleus accumbens, left caudate nucleus and right amygdala with pain-specific psychometric scores in cLBP., Conclusions: These data suggest OXT-related modulation of regional activity and neural network strength in patients with cLBP and healthy controls. In patients, distinct regions of the pain matrix may be responsive to modulation by OXT., Significance: Our data suggest significant oxytocin-related modulation of intrinsic regional activity and neural network strength in patients with chronic low back pain and healthy controls. In patients, distinct regions of the pain matrix may be responsive to modulation by oxytocin. Therapeutic effects of oxytocin for improved pain treatment need to be further investigated., (© 2020 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.)
- Published
- 2020
- Full Text
- View/download PDF
10. Hypothalamic-pituitary-adrenal axis feedback sensitivity in different states of back pain.
- Author
-
Nees F, Löffler M, Usai K, and Flor H
- Subjects
- Adult, Anxiety psychology, Anxiety Disorders physiopathology, Depression psychology, Depressive Disorder physiopathology, Dexamethasone pharmacology, Female, Humans, Hydrocortisone analysis, Hypothalamo-Hypophyseal System physiopathology, Male, Middle Aged, Pain metabolism, Pain physiopathology, Pituitary-Adrenal System physiopathology, Saliva chemistry, Stress, Psychological physiopathology, Back Pain physiopathology, Pain Threshold psychology, Stress, Physiological physiology
- Abstract
Pain normally signals a threat to bodily integrity and causes emotional distress. Acute pain serves a protective function, yet, when pain turns chronic, the protective function is lost. A chain of psychophysiological alterations including changes in the stress regulation system, apparent in dysfunctional activity and responsivity of the hypothalamic-pituitary-adrenal (HPA) axis, might be an important factor in this context. Moreover, maladaptive responses may be complicated by affective comorbid symptoms such as anxiety and depression, and alter nociceptive processing. However, the relationship among pain chronicity, stress regulation, and contributing components of comorbid symptomatology as well as somatosensory profiles has rarely been examined. In the present study, we obtained diurnal cortisol profiles at baseline and feedback regulation (following a dexamethasone suppression test (DST)) in subacute (SABP) and chronic (CBP) back pain patients and healthy control individuals (HC). We also assessed anxiety, depression and chronic stress levels and used quantitative sensory testing (QST) to detect sensory abnormalities. We found a hyper-suppression of cortisol following DST and thus enhanced negative stress feedback sensitivity in SABP compared to both CBP and HC. In SABP, DST-related cortisol levels were negatively associated with pain intensity, mediated by cold pain thresholds and anxiety. These data support a stress model of pain chronicity and suggest that stress responses might be indicators of individual vulnerability in the transition period of subacute pain., (Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
11. The evaluation and brain representation of pleasant touch in chronic and subacute back pain.
- Author
-
Nees F, Usai K, Löffler M, and Flor H
- Abstract
If touch is perceived as pleasant, it can counteract the experience of pain. However, its pain-inhibitory function might be disturbed in chronic pain and this could contribute to pain-related interference. We investigated the perception of pleasant touch and its brain correlates in chronic back pain patients (CBP) compared to subacute back pain patients (SABP) and healthy controls (HC) using soft brush strokes. CBP showed less positive evaluations of touch. We found the highest activation in somatosensory and insular cortices in CBP, ventral striatum (VS) in SABP, and the orbitofrontal cortex in HC. Brain responses were significantly positively correlated with pleasantness ratings in HC and SABP, but not CBP. Further, the insula responses in CBP were positively correlated with pain-related interference and the VS activation in SABP correlated negatively with affective distress. Brain and behavioral changes in the processing of touch and its pleasantness may be a marker of pain chronicity and raise questions about the therapeutic value of pleasant touch in pain prevention and treatment.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.