13 results on '"Urrutia-Jalabert, R"'
Search Results
2. Environmental correlates of stem radius change in the endangered Fitzroya cupressoides forests of southern Chile
- Author
-
Urrutia-Jalabert, R., Rossi, S., Deslauriers, A., Malhi, Y., and Lara, A.
- Published
- 2015
- Full Text
- View/download PDF
3. Climate response and drought resilience of Nothofagus obliqua secondary forests across a latitudinal gradient in south-central Chile
- Author
-
Urrutia-Jalabert, R., primary, Barichivich, J., additional, Rozas, V., additional, Lara, A., additional, Rojas, Y., additional, Bahamondez, C., additional, Rojas-Badilla, M., additional, Gipoulou-Zuñiga, T., additional, and Cuq, E., additional
- Published
- 2021
- Full Text
- View/download PDF
4. Elucidating the hydraulic vulnerability of the longest-lived Southern Hemisphere conifer to aridification
- Author
-
Urrutia-Jalabert, R., primary, Peña, M.P., additional, Coopman, R.E., additional, Carvajal, D.E., additional, Jiménez-Castillo, M., additional, Lara, A., additional, Cosimo, D., additional, and Lobos-Catalán, P., additional
- Published
- 2018
- Full Text
- View/download PDF
5. Carbon dynamics and woody growth in Fitzroya cupressoides forests of southern Chile and their environmental correlates, from seasonal to decadal timescales
- Author
-
Urrutia Jalabert, R, Malhi, Y, and Berry, P
- Subjects
Latin America ,Plant Sciences ,Botanical sciences (see Plant sciences) ,Biodiversity ,Environmental change - Abstract
Among the most compelling and least well-understood tree species growing in the temperate forests of southern South America is Fitzroya cupressoides, a high biomass species and the second longest-lived tree species in the world. This thesis quantified the main components of the carbon cycle in Fitzroya forests (i.e. net primary productivity (NPP) and soil respiration) and evaluated the environmental variables that are most related to them. The study was focused on medium-age and old-growth forests growing in the Coastal Range (Alerce Costero National Park, AC) and the Andean Cordillera (Alerce Andino National Park, AA) of southern Chile, respectively. The specific objectives of this thesis were to: 1) assess the forest structure, species composition and characterise the environmental conditions of these forests; 2) assess biomass, aboveground NPP, carbon allocation and mean wood residence time in these forests; 3) assess soil respiration and relate it to soil environmental conditions. Additionally, to use a mass balance approach to estimate fine root productivity; 4) estimate total NPP using biometric and indirect estimates of productivity; 5) evaluate the climatic factors mainly related to Fitzroya stem radial change on an intra-annual basis; and 6) evaluate changes in Fitzroya's tree growth and carbon isotopes during recent decades, and determine which environmental factors are more related to them. The last two objectives focus on Fitzroya as the dominant species and the subject of this study. Two 0.6 ha plots were installed within each national park; NPP was estimated for a year and soil respiration and high resolution stem growth measurements were monitored over almost two years. Aboveground biomass estimates for the Andean site are among the most massive reported in the world and carbon fluxes in Fitzroya forests are among the lowest reported for temperate wet forests worldwide. The longevity as well as the particularly rainy and nutrient poor soil conditions where these ecosystems grow may influence their exceptionally slow carbon dynamics. Differences in carbon fluxes between sites seem most probably driven by different environmental conditions rather than by developmental stage. Moreover, carbon fluxes were more sensitive to interannual climate variability in AC than AA. Warmer and drier summer conditions, likely to become more common under future climate change, more significantly affected stem growth and soil respiration in the Coastal Range than in the Andes. Regarding long-term changes, tree growth has been decreasing in the coastal site in the last 40 years and increasing in the Andes since the 1900s. These trends have been accompanied by an increase in intrinsic water use efficiency which is likely caused by rises in CO2 and changes in climate conditions in both sites. Although Fitzroya grows in particularly wet and cool areas, projected drier and warmer conditions may have a negative effect on Fitzroya stem growth and carbon sequestration in both study sites. This effect would be more critical in the Coastal Range though, because of its more Mediterranean climate influence and more restrictive soil conditions in this area. Adequate resources are needed for the monitoring and conservation of these slow growth and massive forests especially in the Coastal Range, in order to avoid ongoing illegal cuttings and threatening forest fires.
- Published
- 2016
6. The global spectrum of plant form and function: enhanced species-level trait dataset
- Author
-
Sandra Díaz, Jens Kattge, Johannes H. C. Cornelissen, Ian J. Wright, Sandra Lavorel, Stéphane Dray, Björn Reu, Michael Kleyer, Christian Wirth, I. Colin Prentice, Eric Garnier, Gerhard Bönisch, Mark Westoby, Hendrik Poorter, Peter B. Reich, Angela T. Moles, John Dickie, Amy E. Zanne, Jérôme Chave, S. Joseph Wright, Serge N. Sheremetiev, Hervé Jactel, Christopher Baraloto, Bruno E. L. Cerabolini, Simon Pierce, Bill Shipley, Fernando Casanoves, Julia S. Joswig, Angela Günther, Valeria Falczuk, Nadja Rüger, Miguel D. Mahecha, Lucas D. Gorné, Bernard Amiaud, Owen K. Atkin, Michael Bahn, Dennis Baldocchi, Michael Beckmann, Benjamin Blonder, William Bond, Ben Bond-Lamberty, Kerry Brown, Sabina Burrascano, Chaeho Byun, Giandiego Campetella, Jeannine Cavender-Bares, F. Stuart Chapin, Brendan Choat, David Anthony Coomes, William K. Cornwell, Joseph Craine, Dylan Craven, Matteo Dainese, Alessandro Carioca de Araujo, Franciska T. de Vries, Tomas Ferreira Domingues, Brian J. Enquist, Jaime Fagúndez, Jingyun Fang, Fernando Fernández-Méndez, Maria T. Fernandez-Piedade, Henry Ford, Estelle Forey, Gregoire T. Freschet, Sophie Gachet, Rachael Gallagher, Walton Green, Greg R. Guerin, Alvaro G. Gutiérrez, Sandy P. Harrison, Wesley Neil Hattingh, Tianhua He, Thomas Hickler, Steven I. Higgins, Pedro Higuchi, Jugo Ilic, Robert B. Jackson, Adel Jalili, Steven Jansen, Fumito Koike, Christian König, Nathan Kraft, Koen Kramer, Holger Kreft, Ingolf Kühn, Hiroko Kurokawa, Eric G. Lamb, Daniel C. Laughlin, Michelle Leishman, Simon Lewis, Frédérique Louault, Ana C. M. Malhado, Peter Manning, Patrick Meir, Maurizio Mencuccini, Julie Messier, Regis Miller, Vanessa Minden, Jane Molofsky, Rebecca Montgomery, Gabriel Montserrat-Martí, Marco Moretti, Sandra Müller, Ülo Niinemets, Romà Ogaya, Kinga Öllerer, Vladimir Onipchenko, Yusuke Onoda, Wim A. Ozinga, Juli G. Pausas, Begoña Peco, Josep Penuelas, Valério D. Pillar, Clara Pladevall, Christine Römermann, Lawren Sack, Norma Salinas, Brody Sandel, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Ernst-Detlef Schulze, Fritz Schweingruber, Satomi Shiodera, Ênio Sosinski, Nadejda Soudzilovskaia, Marko J. Spasojevic, Emily Swaine, Nathan Swenson, Susanne Tautenhahn, Ken Thompson, Alexia Totte, Rocío Urrutia-Jalabert, Fernando Valladares, Peter van Bodegom, François Vasseur, Kris Verheyen, Denis Vile, Cyrille Violle, Betsy von Holle, Patrick Weigelt, Evan Weiher, Michael C. Wiemann, Mathew Williams, Justin Wright, Gerhard Zotz, Biology, General Botany and Nature Management, Instituto Multidisciplinario de Biología Vegetal [Córdoba] (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Facultad de Ciencias Exactas, Físicas y Naturales [Córdoba], Universidad Nacional de Córdoba [Argentina]-Universidad Nacional de Córdoba [Argentina], Universidad Nacional de Córdoba [Argentina], Ecologie quantitative et évolutive des communautés, Département écologie évolutive [LBBE], Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM), Biodiversité, Gènes & Communautés (BioGeCo), Université de Bordeaux (UB)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Etude et Compréhension de la biodiversité (ECODIV), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Unité Mixte de Recherche sur l'Ecosystème Prairial - UMR (UREP), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), TRY initiative on plant traits (https://www.try-db.org).TRY is an initiative of the Max Planck Institute for Biogeochemistry, bioDISCOVERY/Future Earth (ICSU), the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and Nucleo DiverSus (CONICET-Universidad Nacional de Cordoba, Argentina)., The Global Spectrum of Plant Form and Function study has been supported by the European BACI project (Towards a Biosphere Atmosphere change Index, EU grant ID 640176), FONCyT, CONICET, Universidad Nacional de Cordoba, the Inter-American Institute for Global Change Research, and The Newton Fund (NERC UK -CONICET ARG), Díaz, Sandra [0000-0003-0012-4612], Kattge, Jens [0000-0002-1022-8469], Wright, Ian J [0000-0001-8338-9143], Lavorel, Sandra [0000-0002-7300-2811], Dray, Stéphane [0000-0003-0153-1105], Wirth, Christian [0000-0003-2604-8056], Garnier, Eric [0000-0002-9392-5154], Westoby, Mark [0000-0001-7690-4530], Reich, Peter B [0000-0003-4424-662X], Moles, Angela T [0000-0003-2041-7762], Zanne, Amy E [0000-0001-6379-9452], Chave, Jérôme [0000-0002-7766-1347], Wright, S Joseph [0000-0003-4260-5676], Sheremetiev, Serge N [0000-0002-0318-6766], Baraloto, Christopher [0000-0001-7322-8581], Cerabolini, Bruno EL [0000-0002-3793-0733], Casanoves, Fernando [0000-0001-8765-9382], Joswig, Julia S [0000-0002-7786-1728], Mahecha, Miguel D [0000-0003-3031-613X], Atkin, Owen K [0000-0003-1041-5202], Bahn, Michael [0000-0001-7482-9776], Bond, William [0000-0002-3441-2084], Bond-Lamberty, Ben [0000-0001-9525-4633], Byun, Chaeho [0000-0003-3209-3275], Campetella, Giandiego [0000-0001-6126-522X], Cavender-Bares, Jeannine [0000-0003-3375-9630], Chapin, F Stuart [0000-0002-2558-9910], Choat, Brendan [0000-0002-9105-640X], Coomes, David Anthony [0000-0002-8261-2582], Cornwell, William K [0000-0003-4080-4073], Craine, Joseph [0000-0001-6561-3244], Craven, Dylan [0000-0003-3940-833X], Dainese, Matteo [0000-0001-7052-5572], Domingues, Tomas Ferreira [0000-0003-2857-9838], Enquist, Brian J [0000-0002-6124-7096], Gallagher, Rachael [0000-0002-4680-8115], Harrison, Sandy P [0000-0001-5687-1903], Hattingh, Wesley Neil [0000-0002-3626-5137], He, Tianhua [0000-0002-0924-3637], Higuchi, Pedro [0000-0002-3855-555X], Jackson, Robert B [0000-0001-8846-7147], Jansen, Steven [0000-0002-4476-5334], Kreft, Holger [0000-0003-4471-8236], Kühn, Ingolf [0000-0003-1691-8249], Kurokawa, Hiroko [0000-0001-8778-8045], Laughlin, Daniel C [0000-0002-9651-5732], Manning, Peter [0000-0002-7940-2023], Mencuccini, Maurizio [0000-0003-0840-1477], Müller, Sandra [0000-0003-4289-755X], Pausas, Juli G [0000-0003-3533-5786], Penuelas, Josep [0000-0002-7215-0150], Pillar, Valério D [0000-0001-6408-2891], Sack, Lawren [0000-0002-7009-7202], Salinas, Norma [0000-0001-9941-2109], Sardans, Jordi [0000-0003-2478-0219], Scherer-Lorenzen, Michael [0000-0001-9566-590X], Sosinski, Ênio [0000-0001-6310-9474], Spasojevic, Marko J [0000-0003-1808-0048], Weigelt, Patrick [0000-0002-2485-3708], Williams, Mathew [0000-0001-6117-5208], Zotz, Gerhard [0000-0002-6823-2268], Apollo - University of Cambridge Repository, Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Diaz, S, Kattge, J, Cornelissen, JHC, Wright, IJ, Lavorel, S, Dray, S, Reu, B, Kleyer, M, Wirth, C, Prentice, IC, Garnier, E, Bonisch, G, Westoby, M, Poorter, H, Reich, PB, Moles, AT, Dickie, J, Zanne, AE, Chave, J, Wright, SJ, Sheremetiev, SN, Jactel, H, Baraloto, C, Cerabolini, BEL, Pierce, S, Shipley, B, Casanoves, F, Joswig, JS, Gunther, A, Falczuk, V, Ruger, N, Mahecha, MD, Gorne, LD, Amiaud, B, Atkin, OK, Bahn, M, Baldocchi, D, Beckmann, M, Blonder, B, Bond, W, Bond-Lamberty, B, Brown, K, Burrascano, S, Byun, C, Campetella, G, Cavender-Bares, J, Chapin, FS, Choat, B, Coomes, DA, Cornwell, WK, Craine, J, Craven, D, Dainese, M, de Araujo, AC, de Vries, FT, Domingues, TF, Enquist, BJ, Fagundez, J, Fang, J, Fernandez-Mendez, F, Fernandez-Piedade, MT, Ford, H, Forey, E, Freschet, GT, Gachet, S, Gallagher, R, Green, W, Guerin, GR, Gutierrez, AG, Harrison, SP, Hattingh, WN, He, T, Hickler, T, Higgins, SI, Higuchi, P, Ilic, J, Jackson, RB, Jalili, A, Jansen, S, Koike, F, Konig, C, Kraft, N, Kramer, K, Kreft, H, Kuhn, I, Kurokawa, H, Lamb, EG, Laughlin, DC, Leishman, M, Lewis, S, Louault, F, Malhado, ACM, Manning, P, Meir, P, Mencuccini, M, Messier, J, Miller, R, Minden, V, Molofsky, J, Montgomery, R, Montserrat-Marti, G, Moretti, M., Muller, S, Niinemets, U, Ogaya, R, Ollerer, K, Onipchenko, V, Onoda, Y, Ozinga, WA, Pausas, JG, Peco, B, Penuelas, J, Pillar, VD, Pladevall, C, Romermann, C, Sack, L, Salinas, N, Sandel, B, Sardans, J, Schamp, B, Scherer-Lorenzen, M, Schulze, ED, Schweingruber, F, Shiodera, S, Sosinski, E, SOUDZILOVSKAIA, Nadia, Spasojevic, MJ, Swaine, E, Swenson, N, Tautenhahn, S, Thompson, K, Totte, A, Urrutia-Jalabert, R, Valladares, F, van Bodegom, P, Vasseur, F, Verheyen, K, Vile, D, Violle, C, von Holle, B, Weigelt, P, Weiher, E, Wiemann, MC, Williams, M, Wright, J, Zotz, G, and Systems Ecology
- Subjects
Statistics and Probability ,Data Descriptor ,[SDV]Life Sciences [q-bio] ,Bos- en Landschapsecologie ,Library and Information Sciences ,Education ,SIZE-REDUCTION ,QUERCUS-ILEX ,WIDE-RANGE ,Life Science ,Forest and Landscape Ecology ,Macroecology ,Vegetatie ,Vegetation ,ENVIRONMENT RELATIONSHIPS ,3103 Ecology ,Biology and Life Sciences ,Biodiversity ,3108 Plant Biology ,Computer Science Applications ,Biogeography ,631/158/852 ,FOLIAR NITROGEN ISOTOPES ,631/158/851 ,[SDE]Environmental Sciences ,Vegetatie, Bos- en Landschapsecologie ,Vegetation, Forest and Landscape Ecology ,LEAF ECONOMICS SPECTRUM ,Statistics, Probability and Uncertainty ,data-descriptor ,ELEVATED CO2 ,WOODY-PLANTS ,PHOTOSYNTHETIC CAPACITY ,631/158/670 ,RELATIVE GROWTH-RATE ,Information Systems ,31 Biological Sciences - Abstract
[Abstract] Here we provide the ‘Global Spectrum of Plant Form and Function Dataset’, containing species mean values for six vascular plant traits. Together, these traits –plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass – define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date. The study has been supported by the TRY initiative on plant traits (https://www.try-db.org). TRY is an initiative of the Max Planck Institute for Biogeochemistry, bioDISCOVERY/Future Earth (ICSU), the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and Núcleo DiverSus (CONICET- Universidad Nacional de Córdoba, Argentina). The Global Spectrum of Plant Form and Function study has been supported by the European BACI project (Towards a Biosphere Atmosphere change Index, EU grant ID 640176), and grants to SD by FONCyT, CONICET, Universidad Nacional de Córdoba, the Inter-American Institute for Global Change Research, and The Newton Fund (NERC UK – CONICET ARG). VO thanks RSF (#19-14-00038p). Open Access funding enabled and organized by Projekt DEAL
- Published
- 2022
7. Chile's road plans threaten ancient forests.
- Author
-
Urrutia-Jalabert R, Barichivich J, Gutiérrez ÁG, and Miranda A
- Subjects
- Chile, Extinction, Biological, Forests, Endangered Species, Cupressaceae
- Published
- 2023
- Full Text
- View/download PDF
8. Warming and drought weaken the carbon sink capacity of an endangered paleoendemic temperate rainforest in South America.
- Author
-
Perez-Quezada JF, Barichivich J, Urrutia-Jalabert R, Carrasco E, Aguilera D, Bacour C, and Lara A
- Abstract
Measurements of ecosystem carbon (C) fluxes in temperate forests are concentrated in the Northern Hemisphere, leaving the functionally diverse temperate forests in the Southern Hemisphere underrepresented. Here, we report three years (February 2018-January 2021) of C fluxes, studied with eddy-covariance and closed chamber techniques, in an endangered temperate evergreen rainforest of the long-lived paleoendemic South American conifer Fitzroya cupressoides . Using classification and regression trees we analyzed the most relevant drivers and thresholds of daily net ecosystem exchange (NEE) and soil respiration. The annual NEE showed that the forest was a moderate C sink during the period analyzed (-287±38 g C m
-2 year-1 ). We found that the capacity to capture C of the Fitzroya rainforests in the Coastal Range of southern Chile is optimal under cool and rainy conditions in the early austral spring (October-November) and decreases rapidly towards the summer dry season (January-February) and autumn. Although the studied forest type has a narrow geographical coverage, the gross primary productivity measured at the tower was highly representative of Fitzroya and other rainforests in the region. Our results suggest that C fluxes in paleoendemic cool F. cupressoides forests may be negatively affected by the warming and drying predicted by climate change models, reinforcing the importance of maintaining this and other long-term ecological research sites in the Southern Hemisphere.- Published
- 2023
- Full Text
- View/download PDF
9. The global spectrum of plant form and function: enhanced species-level trait dataset.
- Author
-
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Zanne AE, Chave J, Wright SJ, Sheremetiev SN, Jactel H, Baraloto C, Cerabolini BEL, Pierce S, Shipley B, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD, Amiaud B, Atkin OK, Bahn M, Baldocchi D, Beckmann M, Blonder B, Bond W, Bond-Lamberty B, Brown K, Burrascano S, Byun C, Campetella G, Cavender-Bares J, Chapin FS 3rd, Choat B, Coomes DA, Cornwell WK, Craine J, Craven D, Dainese M, de Araujo AC, de Vries FT, Domingues TF, Enquist BJ, Fagúndez J, Fang J, Fernández-Méndez F, Fernandez-Piedade MT, Ford H, Forey E, Freschet GT, Gachet S, Gallagher R, Green W, Guerin GR, Gutiérrez AG, Harrison SP, Hattingh WN, He T, Hickler T, Higgins SI, Higuchi P, Ilic J, Jackson RB, Jalili A, Jansen S, Koike F, König C, Kraft N, Kramer K, Kreft H, Kühn I, Kurokawa H, Lamb EG, Laughlin DC, Leishman M, Lewis S, Louault F, Malhado ACM, Manning P, Meir P, Mencuccini M, Messier J, Miller R, Minden V, Molofsky J, Montgomery R, Montserrat-Martí G, Moretti M, Müller S, Niinemets Ü, Ogaya R, Öllerer K, Onipchenko V, Onoda Y, Ozinga WA, Pausas JG, Peco B, Penuelas J, Pillar VD, Pladevall C, Römermann C, Sack L, Salinas N, Sandel B, Sardans J, Schamp B, Scherer-Lorenzen M, Schulze ED, Schweingruber F, Shiodera S, Sosinski Ê, Soudzilovskaia N, Spasojevic MJ, Swaine E, Swenson N, Tautenhahn S, Thompson K, Totte A, Urrutia-Jalabert R, Valladares F, van Bodegom P, Vasseur F, Verheyen K, Vile D, Violle C, von Holle B, Weigelt P, Weiher E, Wiemann MC, Williams M, Wright J, and Zotz G
- Abstract
Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
10. Ecophysiological responses of Nothofagus obliqua forests to recent climate drying across the Mediterranean-Temperate biome transition in south-central Chile.
- Author
-
Urrutia-Jalabert R, Barichivich J, Szejner P, Rozas V, and Lara A
- Abstract
The forests of south-central Chile are facing a drying climate and a megadrought that started in 2010. This study addressed the physiological responses of five Nothofagus obliqua stands across the Mediterranean-Temperate gradient (35.9 ° -40.3° S) using carbon isotope discrimination (Δ
13 C) and intrinsic water use efficiency (iWUE) in tree rings during 1967-2017. Moreover, δ18 O was evaluated in the northernmost site to better understand the effects of the megadrought in this drier location. These forests have become more efficient in their use of water. However, trees from the densest stand are discriminating more against13 C, probably due to reduced photosynthetic rates associated with increasing competition. The strongest associations between climate and Δ13 C were found in the northernmost stand, suggesting that warmer and drier conditions could have reduced13 C discrimination. Tree growth in this site has not decreased, and δ18 O was negatively related to annual rainfall. However, a shift in this relationship was found since 2007, when both precipitation and δ18 O decreased, while correlations between δ18 O and growth increased. This implies that tree growth and δ18 O are coupled in recent years, but precipitation is not the cause, suggesting that trees probably changed their water source to deeper and more depleted pools. Our research demonstrates that forests are not reducing their growth in central Chile, mainly due to a shift towards the use of deeper water sources. Despite a common climate trend across the gradient, there is a non-uniform response of N. obliqua forests to climate drying, being their response site specific. Keywords: Tree rings, stable isotopes, tree physiology, climate gradient, megadrought, climate change.- Published
- 2022
- Full Text
- View/download PDF
11. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century.
- Author
-
Morales MS, Cook ER, Barichivich J, Christie DA, Villalba R, LeQuesne C, Srur AM, Ferrero ME, González-Reyes Á, Couvreux F, Matskovsky V, Aravena JC, Lara A, Mundo IA, Rojas F, Prieto MR, Smerdon JE, Bianchi LO, Masiokas MH, Urrutia-Jalabert R, Rodriguez-Catón M, Muñoz AA, Rojas-Badilla M, Alvarez C, Lopez L, Luckman BH, Lister D, Harris I, Jones PD, Williams AP, Velazquez G, Aliste D, Aguilera-Betti I, Marcotti E, Flores F, Muñoz T, Cuq E, and Boninsegna JA
- Subjects
- Droughts, Geographic Mapping, Models, Statistical, Rain, South America, Climate, Global Warming, Trees growth & development
- Abstract
South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia-New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño-Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions., Competing Interests: The authors declare no competing interest., (Copyright © 2020 the Author(s). Published by PNAS.)
- Published
- 2020
- Full Text
- View/download PDF
12. Low Growth Sensitivity and Fast Replenishment of Non-structural Carbohydrates in a Long-Lived Endangered Conifer After Drought.
- Author
-
Urrutia-Jalabert R, Lara A, Barichivich J, Vergara N, Rodriguez CG, and Piper FI
- Abstract
There is an ongoing debate on whether a drought induced carbohydrate limitation (source limitation) or a direct effect of water shortage (sink limitation) limit growth under drought. In this study, we investigated the effects of the two driest summers recorded in southern Chile in the last seven decades, on the growth and non-structural carbohydrates (NSC) concentrations of the slow-growing conifer Fitzroya cupressoides . Specifically, we studied the seasonal variation of NSC in saplings and adults one and two years after the occurrence of a 2 year-summer drought at two sites of contrasting precipitation and productivity (mesic-productive vs. rainy-less productive). We also evaluated radial growth before, during and after the drought, and predicted that drought could have reduced growth. If drought caused C source limitation, we expected that NSCs will be lower during the first than the second year after drought. Conversely, similar NSC concentrations between years or higher NSC concentrations in the first year would be supportive of sink limitation. Also, due to the lower biomass of saplings compared with adults, we expected that saplings should experience stronger seasonal NSC remobilization than adults. We confirmed this last expectation. Moreover, we found no significant growth reduction during drought in the rainy site and a slightly significant growth reduction at the mesic site for both saplings and adults. Across organs and in both sites and age classes, NSC, starch, and sugar concentrations were generally higher in the first than in the second year following drought, while NSC seasonal remobilization was generally lower. Higher NSC concentrations along with lower seasonal NSC remobilization during the first post-drought year are supportive of sink limitation. However, as these results were found at both sites while growth decreased slightly and just at the mesic site, limited growth only is unlikely to have caused NSC accumulation. Rather, these results suggest that the post-drought dynamics of carbohydrate storage are partly decoupled from the growth dynamics, and that the rebuild of C reserves after drought may be a priority in this species., (Copyright © 2020 Urrutia-Jalabert, Lara, Barichivich, Vergara, Rodriguez and Piper.)
- Published
- 2020
- Full Text
- View/download PDF
13. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.
- Author
-
Urrutia-Jalabert R, Malhi Y, and Lara A
- Subjects
- Chile, Trees, Tropical Climate, Biomass, Carbon metabolism, Ecosystem, Rainforest
- Abstract
Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1) and 448-517 Mg C ha(-1) in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1) year(-1) in AC and 2.22-2.54 Mg C ha(-1) year(-1) in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1) year(-1) in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.