1. Autonomous driving using GA-optimized neural network based adaptive LPV-MPC controller
- Author
-
Yassine Kebbati, Naima Ait-Oufroukh, Vicenc Puig, Dalil Ichalal, Vincent Vigneron, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control, Informatique, BioInformatique, Systèmes Complexes (IBISC), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay, CS2AC, and Université polytechnique de Catalogne (UPC)
- Subjects
Neural Networks ,Informàtica::Automàtica i control [Àrees temàtiques de la UPC] ,Control predictiu ,Genetic Algorithms ,LPV-Systems ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,Genetic algorithms ,Autonomous Driving ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,LPV-systems ,Autonomous driving ,Model predictive control ,Predictive control ,Model Predictive Control ,Neural networks - Abstract
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works Autonomous vehicles are complex systems that operate in dynamic environments, where automated driving seeks to control the coupled longitudinal and lateral vehicle dynamics to follow a certain behaviour. Model predictive control is one of the most promising tools for this type of application due to its optimal performance and ability to handle input and output constraints. This paper addresses autonomous driving by introducing an adaptive linear parameter varying model predictive controller (LPV-MPC), whose prediction model is adapted online by a neural network. Moreover, the controller's cost function is optimized by an improved Genetic Algorithm. The proposed controller is evaluated on a challenging track subject to variable wind disturbances.
- Published
- 2022
- Full Text
- View/download PDF