1. Probing nonlocal correlations in magnetic rare-earth clusters
- Author
-
Facemyer, David W. and Ulloa, Sergio E.
- Subjects
Condensed Matter - Other Condensed Matter ,Quantum Physics - Abstract
Understanding and quantifying entanglement entropy is crucial to characterize the quantum behaviors that drive phenomena in a variety of systems. Rare-earth spin complexes, with their unique magnetic properties, provide fertile ground for exploring these nonlocal correlations. In this work, we study Eu$^{2+}$ ions deposited on a Au(111) substrate, modeling finite clusters of large spin-moments using a Heisenberg Hamiltonian parameterized by first-principles calculations. Our analysis reveals a one-to-one correspondence between structures in the differential conductance profiles and changes in the von Neumann entanglement entropy of bipartite subsystems, influenced by probe-ion separation and applied magnetic fields. Distinct braiding patterns in the conductance profiles are shown to correspond to stepwise changes in the entanglement entropy, providing a new avenue for investigating quantum correlations. These results establish a foundation for experimentally probing and controlling entanglement in lanthanide-based systems, with potential applications in quantum technologies., Comment: 8 pages, 8 figures
- Published
- 2024