5 results on '"Uktveryte I"'
Search Results
2. Ancient human genomes suggest three ancestral populations for present-day Europeans
- Author
-
Joanna L. Mountain, Michael F. Hammer, Ruslan Ruizbakiev, Cesare de Filippo, Kumarasamy Thangaraj, David E. C. Cole, Haim Ben-Ami, Leila Laredj, Mark Lipson, Jüri Parik, Valentino Romano, Andres Ruiz-Linares, Fouad Berrada, Dominique Delsate, Ugur Hodoglugil, Antti Sajantila, Olga Utevska, Shahlo Turdikulova, Tor Hervig, Ludmila P. Osipova, Hovhannes Sahakyan, Robert W. Mahley, Ramiro Barrantes, Kirsten I. Bos, Stanislav Dryomov, Peter H. Sudmant, Nadin Rohland, Heng Li, Gabriel Renaud, Mikhail Voevoda, Claudio M. Bravi, Jean-Michel Guinet, Rem I. Sukernik, Joachim Wahl, Matthias Meyer, Christos Economou, Kay Prüfer, Graciela Bailliet, Mait Metspalu, Mikhail Churnosov, Iosif Lazaridis, Johannes Krause, Bonnie Berger, Levon Yepiskoposyan, Francesca Brisighelli, Francesco Calì, Irene Gallego Romero, Oleg Balanovsky, George Ayodo, Alan Cooper, Alissa Mittnik, Julio Molina, George van Driem, Jean-Michel Dugoujon, Larissa Damba, Fedor Platonov, Nick Patterson, David Reich, Thomas B. Nyambo, David Comas, Olga L. Posukh, Béla Melegh, Draga Toncheva, Alena Kushniarevich, Brenna M. Henn, Montgomery Slatkin, René Vasquez, Elena B. Starikovskaya, Joachim Burger, Ayele Tarekegn, Tatijana Zemunik, Ene Metspalu, Sena Karachanak-Yankova, Lalji Singh, Wolfgang Haak, Susanna Sawyer, Rick A. Kittles, Cheryl A. Winkler, Svante Pääbo, Francisco Rothhammer, Marina Gubina, Pierre Zalloua, Aashish R. Jha, Swapan Mallick, Sergi Castellano, Qiaomei Fu, Desislava Nesheva, Sergey Litvinov, Ingrida Uktveryte, Michael Francken, Cosimo Posth, Theologos Loukidis, Cristian Capelli, Janet Kelso, Sarah A. Tishkoff, Toomas Kivisild, Mark G. Thomas, Elin Fornander, Mercedes Villena, Fredrik Hallgren, Vaidutis Kučinskas, Daniel Corach, George B.J. Busby, Judit Bene, William Klitz, Hamza A. Babiker, Karola Kirsanow, Ruth Bollongino, Rita Khusainova, Evan E. Eichler, Sardana A. Fedorova, Klemetti Näkkäläjärvi, Igor Rudan, Susanne Nordenfelt, Joshua G. Schraiber, Elena Balanovska, Antonio Salas, Richard Villems, Gabriel Bedoya, Elza Khusnutdinova, Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Department of Mathematics, Lipson, Mark, Berger Leighton, Bonnie, Lazaridis,I, Patterson,P, Mittnik,A, Renaud,G, Mallick,S, Kirsanow,K, Sudmant,PH, Schraiber,JG, Castellano,S, Lipson,M, Berger,B, Economou,C, Bollongino,R, Fu,Q, Bos,KI, Nordenfelt,S, Li,H, De Filippo,C, Pruefer,K, Sawyer, Posth,C, Haak1,H, Hallgren,F, Fornander,E, Rohland,N, Delsate,D, Francken,M, Guinet,JM, Wah,J, Ayodo,G, Babiker,HA, Bailliet,G, Balanovska,E, Balanovsky,O, Barrantes,R, Bedoya,G, Ben-Ami,H, Bene,J, Berrada,F, Bravi,CM, Brisighelli,F, Busby,GBJ, Cali,F, Churnosov,M, Cole,DEC, Corach,D, Damba,L, van Driem,G, Dryomov,S, Dugoujon,JM, Fedorova,SA, Gallego Romero,I, Gubina,M, Hammer,M, Henn,BM, Hervig,T, Hodoglugi,U, Jha,AR, Karachanak-Yankova,S, Khusainova,R, Khusnutdinova,E, Kittles,R:Kivisild,T, Klitz,W, Kucˇinskas,V, Kushniarevich,A, Laredj,L, Litvinov,S, Loukidis,T, Mahley,RW, Melegh,B, Metspalu,E, Molina,J, Mountain,J, Na¨kka¨la¨ja¨rvi,K, Nesheva,D, Nyambo,T, Osipova,L, Parik,J, Platonov,F, Posukh,O, Romano,V, Rothhammer,F, Rudan,I, Ruizbakiev,R, Sahakyan,H, Sajantila,A, Salas,A, Starikovskaya,EB, Tarekegn,A, Toncheva,D, Turdikulova,S, Uktveryte,I, Utevska,O, Vasquez,R, Villena,M, Voevoda,M, Winkler,CA, Yepiskoposyan,L, Zalloua,P, Zemunik,T, Cooper, Capelli,C, Thomas,MG, Ruiz-inares,A, Tishkoff,SA, Singh,L, Thangaraj,K, Villems,R, Comas,D, Sukernik,R, Metspalu,M, Meyer,M, Eichler,EE, Burger,J, Slatkin,M, Pa¨a¨bo,S, Kelso,J, Reich,D, and Krause,J
- Subjects
History ,Neanderthal ,Biología ,Population Dynamics ,Present day ,Genoma humà ,Genome ,purl.org/becyt/ford/1 [https] ,Basal (phylogenetics) ,Settore BIO/13 - Biologia Applicata ,History, Ancient ,Genetics ,Principal Component Analysis ,education.field_of_study ,0303 health sciences ,Multidisciplinary ,Ancient DNA ,030305 genetics & heredity ,food and beverages ,Agriculture ,Genomics ,3. Good health ,Europe ,Workforce ,CIENCIAS NATURALES Y EXACTAS ,Human ,Archaeogenetics ,Asia ,Lineage (genetic) ,EUROPE ,Otras Ciencias Biológicas ,European Continental Ancestry Group ,Population ,Settore BIO/08 - ANTROPOLOGIA ,evolution ,Europeans ,Biology ,Article ,White People ,Ancient ,Genètica de poblacions humanes ,Human origins ,Ciencias Biológicas ,03 medical and health sciences ,HUMAN ORIGINS ,biology.animal ,Humans ,ANCIENT DNA ,purl.org/becyt/ford/1.6 [https] ,education ,Quantitative Biology - Populations and Evolution ,Denisovan ,030304 developmental biology ,Genetic diversity ,ancient DNA, modern DNA, Europeans, prehistory ,Genome, Human ,Populations and Evolution (q-bio.PE) ,biology.organism_classification ,Evolutionary biology ,FOS: Biological sciences ,Upper Paleolithic ,Human genome ,GENOMICS - Abstract
We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes1,2,3,4 with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians3, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations’ deep relationships and show that early European farmers had ∼44% ancestry from a ‘basal Eurasian’ population that split before the diversification of other non-African lineages., Instituto Multidisciplinario de Biología Celular
- Published
- 2014
3. The high frequency of GJB2 gene mutation c.313_326del14 suggests its possible origin in ancestors of Lithuanian population.
- Author
-
Mikstiene V, Jakaitiene A, Byckova J, Gradauskiene E, Preiksaitiene E, Burnyte B, Tumiene B, Matuleviciene A, Ambrozaityte L, Uktveryte I, Domarkiene I, Rancelis T, Cimbalistiene L, Lesinskas E, Kucinskas V, and Utkus A
- Subjects
- Alleles, Child, Preschool, Connexin 26, Cross-Sectional Studies, Female, Gene Deletion, Gene Frequency, Genetic Association Studies, Genetic Loci, Hearing Loss, Sensorineural diagnosis, Humans, Lithuania, Logistic Models, Male, Mutation, Sequence Analysis, DNA, Connexins genetics, Hearing Loss, Sensorineural genetics, White People genetics
- Abstract
Background: Congenital hearing loss (CHL) is diagnosed in 1 - 2 newborns in 1000, genetic factors contribute to two thirds of CHL cases in industrialised countries. Mutations of the GJB2 gene located in the DFNB1 locus (13q11-12) are a major cause of CHL worldwide. The aim of this cross-sectional study was to assess the contribution of the DFNB1 locus containing the GJB2 and GJB6 genes in the development of early onset hearing loss in the affected group of participants, to determine the population-specific mutational profile and DFNB1-related HL burden in Lithuanian population., Methods: Clinical data were obtained from a collection of 158 affected participants (146 unrelated probands) with early onset non-syndromic HL. GJB2 and GJB6 gene sequencing and GJB6 gene deletion testing were performed. The data of GJB2 and GJB6 gene sequencing in 98 participants in group of self-reported healthy Lithuanian inhabitants were analysed. Statistic summary, homogeneity tests, and logistic regression analysis were used for the assessment of genotype-phenotype correlation., Results: Our findings show 57.5% of affected participants with two pathogenic GJB2 gene mutations identified. The most prevalent GJB2 mutations were c.35delG, p. (Gly12Valfs*2) (rs80338939) and c.313_326del14, p. (Lys105Glyfs*5) (rs111033253) with allele frequencies 64.7% and 28.3% respectively. GJB6 gene mutations were not identified in the affected group of participants. The statistical analysis revealed significant differences between GJB2(-) and GJB2(+) groups in disease severity (p = 0.001), and family history (p = 0.01). The probability of identification of GJB2 mutations in patients with various HL characteristics was estimated. The carrier rate of GJB2 gene mutations - 7.1% (~1 in 14) was identified in the group of healthy participants and a high frequency of GJB2-related hearing loss was estimated in our population., Discussion: The results show a very high proportion of GJB2-positive individuals in the research group affected with sensorineural HL. The allele frequency of c.35delG mutation (64.7 %) is consistent with many previously published studies in groups of affected individuals of Caucasian populations. The high frequency of the c.313_326del14 (28.3 % of pathogenic alleles) mutation in affected group of participants was an unexpected finding in our study suggesting not only a high frequency of carriers of this mutation in our population but also its possible origin in Lithuanian ancestors. The high frequency of carriers of the c.313_326del14 mutation in the entire Lithuanian population is supported by it being identified twice in the ethnic Lithuanian group of healthy participants (a frequency 2.0 % of carriers in the study group)., Conclusion: Analysis of the allele frequency of GJB2 gene mutations revealed a high proportion of c. 313_326del14 (rs111033253) mutations in the GJB2-positive group suggesting its possible origin in Lithuanian forebears. The high frequency of carriers of GJB2 gene mutations in the group of healthy participants corresponds to the substantial frequency of GJB2-associated HL in Lithuania. The observations of the study indicate the significant contribution of GJB2 gene mutations to the pathogenesis of the disorder in the Lithuanian population and will contribute to introducing principles to predict the characteristics of the disease in patients.
- Published
- 2016
- Full Text
- View/download PDF
4. Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data.
- Author
-
Kushniarevich A, Utevska O, Chuhryaeva M, Agdzhoyan A, Dibirova K, Uktveryte I, Möls M, Mulahasanovic L, Pshenichnov A, Frolova S, Shanko A, Metspalu E, Reidla M, Tambets K, Tamm E, Koshel S, Zaporozhchenko V, Atramentova L, Kučinskas V, Davydenko O, Goncharova O, Evseeva I, Churnosov M, Pocheshchova E, Yunusbayev B, Khusnutdinova E, Marjanović D, Rudan P, Rootsi S, Yankovsky N, Endicott P, Kassian A, Dybo A, Tyler-Smith C, Balanovska E, Metspalu M, Kivisild T, Villems R, and Balanovsky O
- Subjects
- Europe, Humans, Phylogeny, Polymorphism, Single Nucleotide, Chromosomes, Human, Y genetics, DNA, Mitochondrial genetics, Gene Pool, Genetic Variation, Language, White People genetics
- Abstract
The Slavic branch of the Balto-Slavic sub-family of Indo-European languages underwent rapid divergence as a result of the spatial expansion of its speakers from Central-East Europe, in early medieval times. This expansion-mainly to East Europe and the northern Balkans-resulted in the incorporation of genetic components from numerous autochthonous populations into the Slavic gene pools. Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: 'central-east European' for West and East Slavs, and 'south-east European' for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people.
- Published
- 2015
- Full Text
- View/download PDF
5. Ancient human genomes suggest three ancestral populations for present-day Europeans.
- Author
-
Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, Sudmant PH, Schraiber JG, Castellano S, Lipson M, Berger B, Economou C, Bollongino R, Fu Q, Bos KI, Nordenfelt S, Li H, de Filippo C, Prüfer K, Sawyer S, Posth C, Haak W, Hallgren F, Fornander E, Rohland N, Delsate D, Francken M, Guinet JM, Wahl J, Ayodo G, Babiker HA, Bailliet G, Balanovska E, Balanovsky O, Barrantes R, Bedoya G, Ben-Ami H, Bene J, Berrada F, Bravi CM, Brisighelli F, Busby GB, Cali F, Churnosov M, Cole DE, Corach D, Damba L, van Driem G, Dryomov S, Dugoujon JM, Fedorova SA, Gallego Romero I, Gubina M, Hammer M, Henn BM, Hervig T, Hodoglugil U, Jha AR, Karachanak-Yankova S, Khusainova R, Khusnutdinova E, Kittles R, Kivisild T, Klitz W, Kučinskas V, Kushniarevich A, Laredj L, Litvinov S, Loukidis T, Mahley RW, Melegh B, Metspalu E, Molina J, Mountain J, Näkkäläjärvi K, Nesheva D, Nyambo T, Osipova L, Parik J, Platonov F, Posukh O, Romano V, Rothhammer F, Rudan I, Ruizbakiev R, Sahakyan H, Sajantila A, Salas A, Starikovskaya EB, Tarekegn A, Toncheva D, Turdikulova S, Uktveryte I, Utevska O, Vasquez R, Villena M, Voevoda M, Winkler CA, Yepiskoposyan L, Zalloua P, Zemunik T, Cooper A, Capelli C, Thomas MG, Ruiz-Linares A, Tishkoff SA, Singh L, Thangaraj K, Villems R, Comas D, Sukernik R, Metspalu M, Meyer M, Eichler EE, Burger J, Slatkin M, Pääbo S, Kelso J, Reich D, and Krause J
- Subjects
- Agriculture history, Asia ethnology, Europe, History, Ancient, Humans, Population Dynamics, Principal Component Analysis, Workforce, Genome, Human genetics, White People classification, White People genetics
- Abstract
We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.