10 results on '"UGA recoding"'
Search Results
2. Alteration of Selenoprotein Expression During Stress and in Aging
- Author
-
Touat-Hamici, Zahia, Legrain, Yona, Sonet, Jordan, Bulteau, Anne-Laure, Chavatte, Laurent, Hatfield, Dolph L., editor, Schweizer, Ulrich, editor, Tsuji, Petra A., editor, and Gladyshev, Vadim N., editor
- Published
- 2016
- Full Text
- View/download PDF
3. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
- Author
-
Touat-Hamici, Zahia, Bulteau, Anne-Laure, Bianga, Juliusz, Jean-Jacques, Hélène, Szpunar, Joanna, Lobinski, Ryszard, and Chavatte, Laurent
- Subjects
- *
SELENOPROTEINS , *CANCER cells , *TISSUE-specific antigens , *POLYMERASE chain reaction , *GENE expression , *THIOREDOXIN reductase (NADPH) - Abstract
Background Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. Methods We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. Results We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. Conclusions We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. General significance We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
4. Translation regulation of mammalian selenoproteins.
- Author
-
Vindry, Caroline, Ohlmann, Théophile, and Chavatte, Laurent
- Subjects
- *
MESSENGER RNA , *SELENOPROTEINS , *SELENIUM deficiency , *SELENOCYSTEINE , *GENETIC code , *CYSTEINE - Abstract
Background Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21 st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. Scope of review The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA [ Ser ]Sec devoted to UGA codon recognition and the SECIS elements located in the 3′UTR of selenoprotein mRNAs. Major conclusions The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. General significance The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
5. The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element.
- Author
-
Latrèche, Lynda, Duhieu, Stéphane, Touat-Hamici, Zahia, Jean-Jean, Olivier, and Chavatte, Laurent
- Published
- 2012
6. Human SepSecS or SLA/LP: selenocysteine formation and autoimmune hepatitis.
- Author
-
Palioura, Sotiria, Herkel, Johannes, Simonović, Miljan, Lohse, Ansgar W., and Söll, Dieter
- Subjects
- *
SELENIUM , *AMINO acids , *ANTIOXIDANTS , *TRACE elements , *ANTIGENS - Abstract
Selenocysteine, the 21st genetically encoded amino acid, is the major form of the antioxidant trace element selenium in the human body. In eukaryotes and archaea its synthesis proceeds through a phosphorylated intermediate in a tRNA-dependent fashion. The final step of selenocysteine formation is catalyzed by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) that converts phosphoseryl-tRNASec to selenocysteinyl-tRNASec. The human SepSecS protein is also known as soluble liver antigen/liver pancreas (SLA/LP), which represents one of the antigens of autoimmune hepatitis. Here we review the discovery of human SepSecS and the current understanding of the immunogenicity of SLA/LP in autoimmune hepatitis. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
7. Translation regulation of mammalian selenoproteins
- Author
-
Théophile Ohlmann, Caroline Vindry, Laurent Chavatte, Contrôle traductionnel des ARNm eucaryotes et viraux – Translational control of Eukaryotic and Viral RNAs, Centre International de Recherche en Infectiologie - UMR (CIRI), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Biophysics ,chemistry.chemical_element ,Computational biology ,Biology ,Biochemistry ,Selenoprotein ,03 medical and health sciences ,chemistry.chemical_compound ,SECIS ,Translational regulation ,Molecular Biology ,chemistry.chemical_classification ,Selenocysteine ,RNA ,Translational control ,Genetic code ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Stop codon ,3. Good health ,Amino acid ,030104 developmental biology ,UGA recoding ,chemistry ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Selenium ,Sec-tRNA([Ser]Sec) - Abstract
International audience; BACKGROUND: Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. SCOPE OF REVIEW: The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA[Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. MAJOR CONCLUSIONS: The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. GENERAL SIGNIFICANCE: The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation.
- Published
- 2018
- Full Text
- View/download PDF
8. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines
- Author
-
Zahia Touat-Hamici, Juliusz Bianga, Anne-Laure Bulteau, Hélène Jean-Jacques, Joanna Szpunar, Ryszard Lobinski, Laurent Chavatte, Centre de génétique moléculaire (CGM), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Université Pierre et Marie Curie - Paris 6 (UPMC)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université, École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP], École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition ( ICAN ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Assistance publique - Hôpitaux de Paris (AP-HP)-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -CHU Pitié-Salpêtrière [APHP], Institut de Génomique Fonctionnelle de Lyon ( IGFL ), École normale supérieure - Lyon ( ENS Lyon ) -Institut National de la Recherche Agronomique ( INRA ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux ( IPREM ), Université de Pau et des Pays de l'Adour ( UPPA ) -Centre National de la Recherche Scientifique ( CNRS ), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Lobinski, Ryszard, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,[SDV]Life Sciences [q-bio] ,Biophysics ,chemistry.chemical_element ,Glutathione peroxidase, IEF – LA-ICP MS, SECIS, Selenoprotein hierarchy, Thioredoxin reductase, UGA recoding ,Biochemistry ,IEF – LA-ICP MS ,03 medical and health sciences ,chemistry.chemical_compound ,SECIS ,Selenoprotein hierarchy ,LNCaP ,Molecular Biology ,SECIS element ,chemistry.chemical_classification ,030102 biochemistry & molecular biology ,Selenocysteine ,integumentary system ,HEK 293 cells ,Thioredoxin reductase ,3. Good health ,Cell biology ,[SDV] Life Sciences [q-bio] ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,UGA recoding ,030104 developmental biology ,chemistry ,Cell culture ,[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry ,Glutathione peroxidase ,Selenoprotein ,Immortalised cell line ,Selenium - Abstract
International audience; Background: Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. Methods: We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. Results: We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGAselenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. Conclusions: We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. General significance: We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture.
- Published
- 2018
- Full Text
- View/download PDF
9. Selective up-regulation of human selenoproteins in response to oxidative stress.
- Author
-
Touat-Hamici Z, Legrain Y, Bulteau AL, and Chavatte L
- Subjects
- Cell Nucleus metabolism, Cytoplasm metabolism, Gene Expression drug effects, Glutathione Peroxidase genetics, Glutathione Peroxidase metabolism, HEK293 Cells, Humans, Immunoblotting, Membrane Proteins genetics, Membrane Proteins metabolism, Microscopy, Fluorescence, Oxidants pharmacology, Phospholipid Hydroperoxide Glutathione Peroxidase, Reactive Oxygen Species metabolism, Reverse Transcriptase Polymerase Chain Reaction, Selenium metabolism, Selenium pharmacology, Selenocysteine genetics, Selenocysteine metabolism, Selenoproteins metabolism, Glutathione Peroxidase GPX1, Hydrogen Peroxide pharmacology, Oxidative Stress, Selenoproteins genetics, Up-Regulation drug effects
- Abstract
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3' UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus., (© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Published
- 2014
- Full Text
- View/download PDF
10. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts.
- Author
-
Legrain Y, Touat-Hamici Z, and Chavatte L
- Subjects
- Animals, Cell Line, Fibroblasts cytology, Humans, RNA, Messenger biosynthesis, Cell Proliferation, Cellular Senescence physiology, Fibroblasts metabolism, Gene Expression Regulation physiology, Selenium metabolism, Selenoproteins biosynthesis
- Abstract
Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.