15 results on '"Turenne, N."'
Search Results
2. LunaR: Overview of a versatile Raman spectrometer for lunar exploration
- Author
-
Cloutis, E. A., primary, Caudill, C., additional, Lalla, E. A., additional, Newman, J., additional, Daly, M., additional, Lymer, E., additional, Freemantle, J., additional, Kruzelecky, R., additional, Applin, D., additional, Chen, H., additional, Connell, S., additional, Fernandes, D., additional, Giusto, F., additional, Hawke, J., additional, Lamamry, J., additional, Murzionak, P., additional, Parkinson, A., additional, Peng, Q.-Y., additional, Turenne, N., additional, and Wolf, Z. U., additional
- Published
- 2022
- Full Text
- View/download PDF
3. In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R. B., Applin, D. M., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S. M., Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J. R., Kalucha, H., Kelly, E., Knutsen, E. W., Lacombe, G., Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J. M., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L. E., McConnochie, T., McLennan, S. M., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R. T., Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., Willis, P., Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R. B., Applin, D. M., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S. M., Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J. R., Kalucha, H., Kelly, E., Knutsen, E. W., Lacombe, G., Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J. M., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L. E., McConnochie, T., McLennan, S. M., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R. T., Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., and Willis, P.
- Abstract
Prior to the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (i) atmospheric turbulence changes at centimeter scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (ii) the speed of sound varies at the surface with frequency, and (iii) high frequency waves are strongly attenuated with distance in CO₂. However, theoretical models were uncertain because of a lack of experimental data at low pressure, and the difficulty to characterize turbulence or attenuation in a closed environment. Here using Perseverance microphone recordings, we present the first characterization of Mars’ acoustic environment and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, revealing a dissipative regime extending over 5 orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are ~10 m/s apart below and above 240 Hz, a unique characteristic of low-pressure CO₂-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to elucidate the large contribution of the CO₂ vibrational relaxation in the audible range. These results establish a ground truth for modelling of acoustic processes, which is critical for studies in atmospheres like Mars and Venus ones.
- Published
- 2022
4. A Komatiite Succession as an Analog for the Olivine Bearing Rocks at Jezero
- Author
-
Brown, A. J., Wiens, R. C., Maurice, S., Uckert, K., Tice, M., Flannery, David, Treiman, A. H., Deen, R. G., Siebach, K. L., Beegle, L. W., Abbey, W. J., Bell, J. F., Mayhew, L. E., Simon, J. I., Beyssac, O., Willis, P. A., Bhartia, R., Smith, R. J., Fouchet, T., Quantin-Nataf, C., Pinet, P., Mandon, Lucia, Le Mouélic, Stéphane, Udry, A., Horgan, B., Calef, F., Cloutis, E., Turenne, N., Royer, Clément, Zorzano, María-Paz, Ravanis, Eleni, Fagents, S., Fairen, Alberto, Gupta, S., Sautter, Violaine, Liu, Y., Schmidt, M., Hickman-Lewis, K., Kah, L. C., Brown, A. J., Wiens, R. C., Maurice, S., Uckert, K., Tice, M., Flannery, David, Treiman, A. H., Deen, R. G., Siebach, K. L., Beegle, L. W., Abbey, W. J., Bell, J. F., Mayhew, L. E., Simon, J. I., Beyssac, O., Willis, P. A., Bhartia, R., Smith, R. J., Fouchet, T., Quantin-Nataf, C., Pinet, P., Mandon, Lucia, Le Mouélic, Stéphane, Udry, A., Horgan, B., Calef, F., Cloutis, E., Turenne, N., Royer, Clément, Zorzano, María-Paz, Ravanis, Eleni, Fagents, S., Fairen, Alberto, Gupta, S., Sautter, Violaine, Liu, Y., Schmidt, M., Hickman-Lewis, K., and Kah, L. C.
- Abstract
The Mars 2020 rover landed at Jezero crater on February 18, 2021. Since then, the rover has traveled around the “Séítah” region and has collected data from the Mastcam-Z, Supercam, PIXL and SHERLOC instruments that has led to insights into the formation of the olivine-clay-carbonate bearing rocks that were identified from orbit. Here we discuss three questions: 1) What have we learned about the olivine-clay- carbonate unit? 2) What terrestrial analogs exist for the unit? 3) Why do the rocks have a thinly layered morphology? We shall briefly mention instrumental measurements which provide important information regarding the olivine bearing rock at Seitah.
- Published
- 2022
5. Author Correction: In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R, Mimoun, D., Wiens, R., Stott, A., Jacob, X., Bertrand, T., Montmessin, Franck, Lanza, N, Alvarez-Llamas, C., Angel, S, Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, Jérémie, Maki, J., Mcclean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C., Rodríguez Manfredi, J., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de La Torre Juárez, M., Tzanetos, T., Stack, K., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R., Applin, D., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S, Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J., Kalucha, H., Kelly, E., Knutsen, Elise Wright, Lacombe, Gaetan, Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L., Mcconnochie, T., Mclennan, S., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R, Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., Willis, P., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Department of Earth, Atmospheric, and Planetary Sciences [West Lafayette] (EAPS), Purdue University [West Lafayette], Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Department of Chemistry and Biochemistry [Columbia, South Carolina], University of South Carolina [Columbia], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Heliospace Corporation, MIT Haystack Observatory, Massachusetts Institute of Technology (MIT), Department of Aeronautics and Astronautics [Cambridge], Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Escuela de Ingeniería de Bilbao, Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Aeolis Corporation, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Blue Marble Space Institute of Science (BMSIS), University of Hawai‘i [Mānoa] (UHM), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), University of Winnipeg, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Plancius Research LLC, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Université de Lyon, GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), McGill University = Université McGill [Montréal, Canada], Universidad de Valladolid [Valladolid] (UVa), IT University of Copenhagen (ITU), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Department of Geological Sciences [Boulder], University of Colorado [Boulder], University of Maryland [College Park], University of Maryland System, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Department of Physics and Applied Physics [Lowell], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), University of Nevada [Las Vegas] (WGU Nevada), and NASA’s Mars Exploration ProgramCNES
- Subjects
Multidisciplinary ,Carbon dioxide ,Modélisation ,[SDU]Sciences of the Universe [physics] ,Atmospheric Turbulence ,Atmospheric Sound ,Microphone ,Mars ,Attenuation ,CO2 ,Perseverance ,Acoustic Environment - Abstract
International audience
- Published
- 2022
- Full Text
- View/download PDF
6. An Examination of Soil Crusts on the Floor of Jezero Crater, Mars
- Author
-
Hausrath, E. M., Adcock, C. T., Bechtold, A., Beck, P., Benison, K., Brown, A., Cardarelli, E. L., Carman, N. A., Chide, B., Christian, J., Clark, B. C., Cloutis, E., Cousin, A., Forni, O., Gabriel, T. S. J., Gasnault, O., Golombek, M., Gómez, F., Hecht, M. H., Henley, T. L. J., Huidobro, J., Johnson, J., Jones, M. W. M., Kelemen, P., Knight, A., Lasue, J. A., Le Mouélic, S., Madariaga, J. M., Maki, J., Mandon, L., Martinez, G., Martínez‐Frías, J., McConnochie, T. H., Meslin, P.‐Y., Zorzano, M.‐P., Newsom, H., Paar, G., Randazzo, N., Royer, C., Siljeström, S., Schmidt, M. E., Schröder, S., Sephton, M. A., Sullivan, R., Turenne, N., Udry, A., VanBommel, S., Vaughan, A., Wiens, R. C., and Williams, N.
- Abstract
Martian soils are critically important for understanding the history of Mars, past potentially habitable environments, returned samples, and future human exploration. This study examines soil crusts on the floor of Jezero crater encountered during initial phases of the Mars 2020 mission. Soil surface crusts have been observed on Mars at other locations, starting with the two Viking Lander missions. Rover observations show that soil crusts are also common across the floor of Jezero crater, revealed in 45 of 101 locations where rover wheels disturbed the soil surface, two out of seven helicopter flights that crossed the wheel tracks, and four of eight abrasion/drilling sites. Most soils measured by the SuperCam laser‐induced breakdown spectroscopy (LIBS) instrument show high hydrogen content at the surface, and fine‐grained soils also show a visible/near infrared (VISIR) 1.9 μm H2O absorption feature. The Planetary Instrument for X‐ray Lithochemistry (PIXL) and SuperCam observations suggest the presence of salts at the surface of rocks and soils. The correlation of S and Cl contents with H contents in SuperCam LIBS measurements suggests that the salts present are likely hydrated. On the “Naltsos” target, magnesium and sulfur are correlated in PIXL measurements, and Mg is tightly correlated with H at the SuperCam points, suggesting hydrated Mg‐sulfates. Mars Environmental Dynamics Analyzer (MEDA) observations indicate possible frost events and potential changes in the hydration of Mg‐sulfate salts. Jezero crater soil crusts may therefore form by salts that are hydrated by changes in relative humidity and frost events, cementing the soil surface together. Martian soils are important for understanding the history of Mars as well as future sample return and human exploration. Soil crusts in Jezero crater, which are also broadly found across Mars, can be observed when they are disturbed, such as by rover wheels or coring/abrasion activities. Jezero crater soil crusts are examined using images from the Perseverance and Ingenuity cameras, as well as using data from the SuperCam, PIXL, Mastcam‐Z, and MEDA instruments. Soil crusts are common in Jezero crater and show characteristics including hydration at the surface and the presence of salts that might contain water. MEDA instrument measurements indicate that changes in the hydration state of salts may result during conditions measured at Jezero crater. Jezero crater soil crusts may therefore form by salts that are present on the surface that can add or lose water during changes in relative atmospheric humidity and frost events. These changes in the amount of water present in the salts may result in soil surfaces that are cemented together, forming the crusts observed at Jezero crater. A better understanding of Mars soil crusts will help in the understanding of samples returned to Earth from Mars, as well as future human exploration. Soil crusts are prevalent across the Jezero crater floorSoil surfaces are largely hydratedSoil crusts likely contain salts and may form during changes in atmospheric relative humidity at the surface Soil crusts are prevalent across the Jezero crater floor Soil surfaces are largely hydrated Soil crusts likely contain salts and may form during changes in atmospheric relative humidity at the surface
- Published
- 2023
- Full Text
- View/download PDF
7. EVELOPMENT OF A RAMAN SPECTRAL DATABASE FOR LUNAR SCIENCE: A LITTLE SALSA ON YOUR DATA.
- Author
-
Manigand, S., Turenne, N., Sidhu, S., Connell, S., Potin, S. M., Applin, D., and Cloutis, E. A.
- Subjects
SCIENCE databases ,RELATIONAL databases ,LUNAR exploration ,SERVER farms (Computer network management) ,LUNAR soil ,PYTHON programming language - Published
- 2021
8. Net activism and whistleblowing on YouTube: a text mining analysis.
- Author
-
Turenne N
- Abstract
Social media is more and more dominant in everyday life for people around the world. YouTube content is a resource that may be useful, in social computational science, for understanding key questions about society. Using this resource, we performed web scraping to create a dataset of 644,575 video transcriptions concerning net activism and whistleblowing. We automatically performed linguistic feature extraction to capture a representation of each video using its title, description and transcription (downloaded metadata). The next step was to clean the dataset using automatic clustering with linguistic representation to identify unmatched videos and noisy keywords. Using these keywords to exclude videos, we finally obtained a dataset that was reduced by 95%, i.e., it contained 35,730 video transcriptions. Then, we again automatically clustered the videos using a lexical representation and split the dataset into subsets, leading to hundreds of clusters that we interpreted manually to identify a hierarchy of topics of interest concerning whistleblowing. We used the dataset to learn a lexical representation for a specific topic and to detect unknown whistleblowing videos for this topic; the accuracy of this detection is 57.4%. We also used the dataset to identify interesting context linguistic markers around the names of whistleblowers. From a given list of names, we automatically extracted all 5-g word sequences from the dataset and identified interesting markers in the left and right contexts for each name by manual interpretation. The results of our study are the following: a dataset (raw and cleaned collections) concerning whistleblowing, a hierarchy of topics about whistleblowing, the automatic prediction of whistleblowing and the semi-automatic semantic analysis of markers around whistleblower names. This text mining analysis can be exploited for digital sociology and e-democracy studies., Competing Interests: Conflict of interestNone., (© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Published
- 2023
- Full Text
- View/download PDF
9. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater.
- Author
-
Bell JF 3rd, Maki JN, Alwmark S, Ehlmann BL, Fagents SA, Grotzinger JP, Gupta S, Hayes A, Herkenhoff KE, Horgan BHN, Johnson JR, Kinch KB, Lemmon MT, Madsen MB, Núñez JI, Paar G, Rice M, Rice JW Jr, Schmitz N, Sullivan R, Vaughan A, Wolff MJ, Bechtold A, Bosak T, Duflot LE, Fairén AG, Garczynski B, Jaumann R, Merusi M, Million C, Ravanis E, Shuster DL, Simon J, St Clair M, Tate C, Walter S, Weiss B, Bailey AM, Bertrand T, Beyssac O, Brown AJ, Caballo-Perucha P, Caplinger MA, Caudill CM, Cary F, Cisneros E, Cloutis EA, Cluff N, Corlies P, Crawford K, Curtis S, Deen R, Dixon D, Donaldson C, Barrington M, Ficht M, Fleron S, Hansen M, Harker D, Howson R, Huggett J, Jacob S, Jensen E, Jensen OB, Jodhpurkar M, Joseph J, Juarez C, Kah LC, Kanine O, Kristensen J, Kubacki T, Lapo K, Magee A, Maimone M, Mehall GL, Mehall L, Mollerup J, Viúdez-Moreiras D, Paris K, Powell KE, Preusker F, Proton J, Rojas C, Sallurday D, Saxton K, Scheller E, Seeger CH, Starr M, Stein N, Turenne N, Van Beek J, Winhold AG, and Yingling R
- Abstract
Perseverance's Mastcam-Z instrument provides high-resolution stereo and multispectral images with a unique combination of spatial resolution, spatial coverage, and wavelength coverage along the rover's traverse in Jezero crater, Mars. Images reveal rocks consistent with an igneous (including volcanic and/or volcaniclastic) and/or impactite origin and limited aqueous alteration, including polygonally fractured rocks with weathered coatings; massive boulder-forming bedrock consisting of mafic silicates, ferric oxides, and/or iron-bearing alteration minerals; and coarsely layered outcrops dominated by olivine. Pyroxene dominates the iron-bearing mineralogy in the fine-grained regolith, while olivine dominates the coarse-grained regolith. Solar and atmospheric imaging observations show significant intra- and intersol variations in dust optical depth and water ice clouds, as well as unique examples of boundary layer vortex action from both natural (dust devil) and Ingenuity helicopter-induced dust lifting. High-resolution stereo imaging also provides geologic context for rover operations, other instrument observations, and sample selection, characterization, and confirmation.
- Published
- 2022
- Full Text
- View/download PDF
10. Compositionally and density stratified igneous terrain in Jezero crater, Mars.
- Author
-
Wiens RC, Udry A, Beyssac O, Quantin-Nataf C, Mangold N, Cousin A, Mandon L, Bosak T, Forni O, McLennan SM, Sautter V, Brown A, Benzerara K, Johnson JR, Mayhew L, Maurice S, Anderson RB, Clegg SM, Crumpler L, Gabriel TSJ, Gasda P, Hall J, Horgan BHN, Kah L, Legett C 4th, Madariaga JM, Meslin PY, Ollila AM, Poulet F, Royer C, Sharma SK, Siljeström S, Simon JI, Acosta-Maeda TE, Alvarez-Llamas C, Angel SM, Arana G, Beck P, Bernard S, Bertrand T, Bousquet B, Castro K, Chide B, Clavé E, Cloutis E, Connell S, Dehouck E, Dromart G, Fischer W, Fouchet T, Francis R, Frydenvang J, Gasnault O, Gibbons E, Gupta S, Hausrath EM, Jacob X, Kalucha H, Kelly E, Knutsen E, Lanza N, Laserna J, Lasue J, Le Mouélic S, Leveille R, Lopez Reyes G, Lorenz R, Manrique JA, Martinez-Frias J, McConnochie T, Melikechi N, Mimoun D, Montmessin F, Moros J, Murdoch N, Pilleri P, Pilorget C, Pinet P, Rapin W, Rull F, Schröder S, Shuster DL, Smith RJ, Stott AE, Tarnas J, Turenne N, Veneranda M, Vogt DS, Weiss BP, Willis P, Stack KM, Williford KH, and Farley KA
- Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
- Published
- 2022
- Full Text
- View/download PDF
11. Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team.
- Author
-
Stack KM, Williams NR, Calef F 3rd, Sun VZ, Williford KH, Farley KA, Eide S, Flannery D, Hughes C, Jacob SR, Kah LC, Meyen F, Molina A, Nataf CQ, Rice M, Russell P, Scheller E, Seeger CH, Abbey WJ, Adler JB, Amundsen H, Anderson RB, Angel SM, Arana G, Atkins J, Barrington M, Berger T, Borden R, Boring B, Brown A, Carrier BL, Conrad P, Dypvik H, Fagents SA, Gallegos ZE, Garczynski B, Golder K, Gomez F, Goreva Y, Gupta S, Hamran SE, Hicks T, Hinterman ED, Horgan BN, Hurowitz J, Johnson JR, Lasue J, Kronyak RE, Liu Y, Madariaga JM, Mangold N, McClean J, Miklusicak N, Nunes D, Rojas C, Runyon K, Schmitz N, Scudder N, Shaver E, SooHoo J, Spaulding R, Stanish E, Tamppari LK, Tice MM, Turenne N, Willis PA, and Yingst RA
- Abstract
The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.
- Published
- 2020
- Full Text
- View/download PDF
12. The rumour spectrum.
- Author
-
Turenne N
- Subjects
- Bayes Theorem, Humans, Models, Theoretical, Support Vector Machine, Information Dissemination, Social Media
- Abstract
Rumour is an old social phenomenon used in politics and other public spaces. It has been studied for only hundred years by sociologists and psychologists by qualitative means. Social media platforms open new opportunities to improve quantitative analyses. We scanned all scientific literature to find relevant features. We made a quantitative screening of some specific rumours (in French and in English). Firstly, we identified some sources of information to find them. Secondly, we compiled different reference, rumouring and event datasets. Thirdly, we considered two facets of a rumour: the way it can spread to other users, and the syntagmatic content that may or may not be specific for a rumour. We found 53 features, clustered into six categories, which are able to describe a rumour message. The spread of a rumour is multi-harmonic having different frequencies and spikes, and can survive several years. Combinations of words (n-grams and skip-grams) are not typical of expressivity between rumours and news but study of lexical transition from a time period to the next goes in the sense of transmission pattern as described by Allport theory of transmission. A rumour can be interpreted as a speech act but with transmission patterns.
- Published
- 2018
- Full Text
- View/download PDF
13. Conceptus elongation in cattle: genes, models and questions.
- Author
-
Hue I, Degrelle SA, and Turenne N
- Subjects
- Animals, Female, Pregnancy, Cattle embryology, Embryonic Development genetics, Gene Expression Regulation, Developmental physiology, Models, Biological
- Abstract
In ruminants, more than 30% of the embryonic loss observed after artificial insemination has an early origin that is coincident with the marked elongation of the conceptus that occurs before implantation. During this developmental phase, physiological interactions are established between the conceptus and the uterus which are essential for the establishment of pregnancy and the elongation process. Our molecular knowledge of elongating conceptuses in cattle has long been focused on its analysis in view of its interactions with the uterus with the elongating stages being defined, like the uterus stages, by days post insemination or conception. The gene clusters reported so far indicate important pathways, some being shared by the non-elongating conceptuses of other mammals. However, to identify the key components of the elongation process - that could be specific to ungulates - new models are needed. Somatic nuclear transfer could be one of them as it provides complementary insights on differentiation beyond the blastocyst stage. Nonetheless, other models are necessary to convert gene lists or networks in elongating phenotypes. This review partly summarizes information on these topics, but data on the impact of the uterus on the elongation process or on the differentiation of the embryonic tissues are reviewed elsewhere., (Copyright © 2012 Elsevier B.V. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
14. Finding biomarkers in non-model species: literature mining of transcription factors involved in bovine embryo development.
- Author
-
Turenne N, Tiys E, Ivanisenko V, Yudin N, Ignatieva E, Valour D, Degrelle SA, and Hue I
- Abstract
Background: Since processes in well-known model organisms have specific features different from those in Bos taurus, the organism under study, a good way to describe gene regulation in ruminant embryos would be a species-specific consideration of closely related species to cattle, sheep and pig. However, as highlighted by a recent report, gene dictionaries in pig are smaller than in cattle, bringing a risk to reduce the gene resources to be mined (and so for sheep dictionaries). Bioinformatics approaches that allow an integration of available information on gene function in model organisms, taking into account their specificity, are thus needed. Besides these closely related and biologically relevant species, there is indeed much more knowledge of (i) trophoblast proliferation and differentiation or (ii) embryogenesis in human and mouse species, which provides opportunities for reconstructing proliferation and/or differentiation processes in other mammalian embryos, including ruminants. The necessary knowledge can be obtained partly from (i) stem cell or cancer research to supply useful information on molecular agents or molecular interactions at work in cell proliferation and (ii) mouse embryogenesis to supply useful information on embryo differentiation. However, the total number of publications for all these topics and species is great and their manual processing would be tedious and time consuming. This is why we used text mining for automated text analysis and automated knowledge extraction. To evaluate the quality of this "mining", we took advantage of studies that reported gene expression profiles during the elongation of bovine embryos and defined a list of transcription factors (or TF, n = 64) that we used as biological "gold standard". When successful, the "mining" approach would identify them all, as well as novel ones., Methods: To gain knowledge on molecular-genetic regulations in a non model organism, we offer an approach based on literature-mining and score arrangement of data from model organisms. This approach was applied to identify novel transcription factors during bovine blastocyst elongation, a process that is not observed in rodents and primates. As a result, searching through human and mouse corpuses, we identified numerous bovine homologs, among which 11 to 14% of transcription factors including the gold standard TF as well as novel TF potentially important to gene regulation in ruminant embryo development. The scripts of the workflow are written in Perl and available on demand. They require data input coming from all various databases for any kind of biological issue once the data has been prepared according to keywords for the studied topic and species; we can provide data sample to illustrate the use and functionality of the workflow., Results: To do so, we created a workflow that allowed the pipeline processing of literature data and biological data, extracted from Web of Science (WoS) or PubMed but also from Gene Expression Omnibus (GEO), Gene Ontology (GO), Uniprot, HomoloGene, TcoF-DB and TFe (TF encyclopedia). First, the human and mouse homologs of the bovine proteins were selected, filtered by text corpora and arranged by score functions. The score functions were based on the gene name frequencies in corpora. Then, transcription factors were identified using TcoF-DB and double-checked using TFe to characterise TF groups and families. Thus, among a search space of 18,670 bovine homologs, 489 were identified as transcription factors. Among them, 243 were absent from the high-throughput data available at the time of the study. They thus stand so far for putative TF acting during bovine embryo elongation, but might be retrieved from a recent RNA sequencing dataset (Mamo et al. , 2012). Beyond the 246 TF that appeared expressed in bovine elongating tissues, we restricted our interpretation to those occurring within a list of 50 top-ranked genes. Among the transcription factors identified therein, half belonged to the gold standard (ASCL2, c-FOS, ETS2, GATA3, HAND1) and half did not (ESR1, HES1, ID2, NANOG, PHB2, TP53, STAT3)., Conclusions: A workflow providing search for transcription factors acting in bovine elongation was developed. The model assumed that proteins sharing the same protein domains in closely related species had the same protein functionalities, even if they were differently regulated among species or involved in somewhat different pathways. Under this assumption, we merged the information on different mammalian species from different databases (literature and biology) and proposed 489 TF as potential participants of embryo proliferation and differentiation, with (i) a recall of 95% with regard to a biological gold standard defined in 2011 and (ii) an extension of more than 3 times the gold standard of TF detected so far in elongating tissues. The working capacity of the workflow was supported by the manual expertise of the biologists on the results. The workflow can serve as a new kind of bioinformatics tool to work on fused data sources and can thus be useful in studies of a wide range of biological processes.
- Published
- 2012
- Full Text
- View/download PDF
15. Temporal representation for gene networks: towards a qualitative temporal data mining.
- Author
-
Turenne N and Schwer SR
- Subjects
- Database Management Systems, Algorithms, Information Storage and Retrieval methods, MEDLINE, Models, Biological, Natural Language Processing, Periodicals as Topic, Proteome metabolism, Signal Transduction physiology
- Abstract
Processing literature (i.e., text corpora) to capture gene regulation events is not easy and can be driven by the final data representation. We propose to build, manually, an example of temporal representation (whole gene networks for coat formation in Bacillus Subtilis). Our temporal representation is based on a generalised formal language theory (S-languages). We propose an algorithm to link bags of relations with representation, by ordering interactions. In this paper, starting from the network made manually from text data, we show that S-languages are quite relevant to encapsulate gene properties, and infer knowledge across timestamped gene relations found in texts.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.