1. Ground states of strongly-correlated materials on quantum computers using ab initio downfolding
- Author
-
Alvertis, Antonios M., Khan, Abid, and Tubman, Norm M.
- Subjects
Quantum Physics ,Condensed Matter - Strongly Correlated Electrons - Abstract
The accurate first-principles description of strongly-correlated materials is an important and challenging problem in condensed matter physics. Ab initio downfolding has emerged as a way of deriving accurate many-body Hamiltonians including strong correlations, representing a subspace of interest of a material, using density functional theory calculations as a starting point. However, the solution of these material-specific models can scale exponentially on classical computers, constituting a challenge. Here we propose that utilizing quantum computers for obtaining the properties of downfolded Hamiltonians yields an accurate description of the ground state properties of strongly-correlated systems, while circumventing the exponential scaling problem. We demonstrate this for diverse strongly-correlated materials by combining ab initio downfolding and variational quantum eigensolvers, correctly predicting the antiferromagnetic state of one-dimensional cuprate $\text{Ca}_2\text{CuO}_3$, the excitonic ground state of monolayer $\text{WTe}_2$, and the charge-ordered state of correlated metal $\text{SrVO}_3$. By utilizing a classical tensor network implementation of variational quantum eigensolvers we are able to simulate large models with up to $54$ qubits and encompassing up to four bands in the correlated subspace, which is indicative of the complexity that our framework can address.
- Published
- 2024