1. Numerical Simulation of Superhalo Electrons Generated by Magnetic Reconnection in the Solar Wind Source Region
- Author
-
Yang, L. -P., Wang, L. -H., He, J. -S., Tu, C. -Y., Zhang, S. -H., Zhang, L., and Feng, X. -S.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Superhalo electrons appear to be continuously present in the interplanetary medium, even at very quiet times, with a power-law spectrum at energies above $\sim$2 keV. Here we numerically investigate the generation of superhalo electrons by magnetic reconnection in the solar wind source region, using the MHD and test particle simulations for both single X-line reconnection and multiple X-line reconnection. We find that the direct current electric field, produced in the magnetic reconnection region, can accelerate electrons from an initial thermal energy of T $\sim10^5$ K up to hundreds of keV. After acceleration, some of the accelerated electrons, together with the nascent solar wind flow driven by the reconnection, propagate upwards along the newly-opened magnetic field lines into the interplanetary space, while the rest move downwards into the lower atmosphere. Similar to the observed superhalo electrons at 1 AU, the flux of the upward-traveling accelerated electrons versus energy displays a power-law distribution at $\sim$ 2 $-$ 100 keV, $f(E) \sim E^{-\delta}$, with a $\delta$ of $\sim$ 1.5 $-$ 2.4. For single (multiple) X-line reconnection, the spectrum becomes harder (softer) as the anomalous resistivity parameter $\alpha$ (uniform resistivity $\eta$) increases. These modeling results suggest that the acceleration in the solar wind source region may contribute to superhalo electrons.
- Published
- 2014
- Full Text
- View/download PDF