1. Three-body model for $K(1460)$ resonance
- Author
-
Filikhin, I., Kezerashvili, R. Ya., Suslov, V. M., Tsiklauri, Sh. M., and Vlahovic, B.
- Subjects
Nuclear Theory ,High Energy Physics - Phenomenology - Abstract
The three-body $KK\bar K$ model for the $K(1460)$ resonance is developed on the basis of the Faddeev equations in configuration space. A single-channel approach is using with taking into account the difference of masses of neutral and charged kaons. It is demonstrated that a splitting the mass of the $K(1460)$ resonance takes a place around 1460 MeV according to $K^0K^0{\bar K}^0$, $K^0K^+K^-$ and $K^+K^0{\bar K}^0$, $ K^+K^+K^-$ neutral and charged particle configurations, respectively. The calculations are performed with two sets of $KK$ and $K\bar K$ phenomenological potentials, where the latter interaction is considered the same for the isospin singlet and triplet states. The effect of repulsion of the $KK$ interaction on the mass of the $KK\bar K$ system is studied and the effect of the mass polarization is evaluated. The first time the Coulomb interaction for description of the $K(1460)$ resonance is considered. The mass splitting in the $K$(1460) resonances is evaluated to be in range of 10 MeV with taking into account the Coulomb force. The three-body model with the $K\bar K$ potential, which has the different strength of the isospin singlet and triplet parts that are related by the condition of obtaining a quasi-bound three-body state is also considered. Our results are in reasonable agreement with the experimental mass of the $K(1460)$ resonance., Comment: 16 pages 8 figures
- Published
- 2020
- Full Text
- View/download PDF