1. CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e - +2e - Mechanism for Exclusive O 2 -To-H 2 O Electroreduction.
- Author
-
Zeng T, Chen J, Yu ZH, and Tse ECM
- Abstract
High O
2 reduction reaction (ORR) kinetics and exclusive 4e- pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and H2 O Faradaic efficiency (FE) concurrently. To address these two challenges, hybrid bilayer membrane (HBM) electrodes with earth-abundant metal centers are developed to control proton-coupled electron transfer (PCET) in ORR. Here, an oxidase-inspired CuFe active site is supported on a tris(2-pyridylmethyl)amine HBM and explored as a unique interface for efficient ORR. This bimetallic HBM displayed an ORR activity 1.4 times higher than the monometallic systems and exhibited the highest FE for H2 O (∼94%) among Cu-, Fe-, Ni-, and Co-based HBMs. Contrary to previous studies where the ORR current decreases upon embedding the metal center in a hydrophobic lipid environment, here, the incorporation of a nitrile-terminated proton carrier at the HBM interface boosts the ORR current by 1.7 folds relative to the case where the catalytic site is directly exposed to protons in solution. This intriguing dual improvement is supported by density function theory calculations where an additional 2e- +2e- mechanism occurs in parallel to the direct 4e- pathway, highlighting the synergistic effect of the CuFe HBM for facilitating high-performance ORR. A Zn-air battery is constructed using this CuFe HBM for the first time, further demonstrating that the knowledge gained from this HBM technology holds practical values in real-life applications. These findings on interfacial PCET are envisioned to spark new design principles for future catalysts with optimal electrochemical properties for advanced energy conversion schemes.- Published
- 2024
- Full Text
- View/download PDF