1. Tryptophan production by catalysis of a putative tryptophan synthase protein.
- Author
-
Cao, Lulu, Zhang, Jiaqi, Chen, Jia, Li, Mei, Chen, Hao, Wang, Chongju, and Gong, Chunjie
- Abstract
Essential amino acid, tryptophan which intake from food plays a critical role in numerous metabolic functions, exhibiting extensive biological functions and applications. Tryptophan is beneficial for the food sector by enhancing nutritional content and promoting the development of functional foods. A putative gene encoding tryptophan synthase was the first identified in Sphingobacterium soilsilvae Em02, a cellulosic bacterium making it inherently more environmentally friendly. The gene was cloned and expressed in exogenous host Escherichia coli, to elucidate its function. The recombinant tryptophan synthase with a molecular weight 42 KDa was expressed in soluble component. The enzymatic activity to tryptophan synthase in vivo was assessed using indole and L-serine and purified tryptophan synthase. The optimum enzymatic activity for tryptophan synthase was recorded at 50 ºC and pH 7.0, which was improved in the presence of metal ions Mg2+, Sr2+ and Mn2+, whereas Cu2+, Zn2+ and Co2+ proved to be inhibitory. Using site-directed mutagenesis, the consensus pattern HK-S-[GGGSN]-E-S in the tryptophan synthase was demonstrated with K100Q, S202A, G246A, E361A and S385A as the active sites. Tryptophan synthase has been demonstrated to possess the defining characteristics of the β-subunits. The tryptophan synthase may eventually be useful for tryptophan production on a larger scale. Its diverse applications highlight the potential for improving both the quality and health benefits of food products, making it an essential component in advancing food science and technology. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF