1. Temporal dynamics of N-hydroxypipecolic acid and salicylic acid pathways in the disease response to powdery mildew in wheat.
- Author
-
Sato Y, Weng Y, Shimazaki T, Yoshida K, Nihei KI, and Okamoto M
- Subjects
- Disease Resistance, Plant Proteins metabolism, Plant Proteins genetics, Triticum microbiology, Triticum metabolism, Triticum genetics, Salicylic Acid metabolism, Ascomycota physiology, Plant Diseases microbiology, Pipecolic Acids metabolism, Gene Expression Regulation, Plant
- Abstract
Wheat (Triticum aestivum) is a major staple crop worldwide, and its yields are significantly threatened by wheat powdery mildew (Blumeria graminis f. sp. tritici). Enhancing disease resistance in wheat is crucial for meeting global food demand. This study investigated the disease response in wheat, focusing on the bioactive small molecules salicylic acid (SA), pipecolic acid (Pip), and N-hydroxypipecolic acid (NHP), to provide new insights for molecular breeding. We found that endogenous levels of SA, Pip, and NHP significantly increased in infected plants, with Pip and NHP levels rising earlier than those of SA. Notably, the rate of increase of NHP was substantially higher than that of SA. The gene expression levels of SARD1 and CBP60g, which are transcription factors for SA, Pip, and NHP biosynthesis, increased significantly during the early stages of infection. We also found that during the later stages of infection, the expression of ALD1, SARD4, and FMO1, which encode enzymes for Pip and NHP biosynthesis, dramatically increased. Additionally, ICS1, which encodes a key enzyme involved in SA biosynthesis, also showed increased expression during the later stages of infection. The temporal changes in ICS1 transcription closely mirrored the behavior of endogenous SA levels, suggesting that the ICS pathway is the primary route for SA biosynthesis in wheat. In conclusion, our results suggest that the early accumulation of Pip and NHP cooperates with SA in the disease response against wheat powdery mildew infection., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF