1. Leibniz algebras with an abelian subalgebra of codimension tw0
- Author
-
Ouaridi, A. Fernandez and Towers, D. A.
- Subjects
Mathematics - Rings and Algebras ,Mathematics - Group Theory ,17A32, 17B05, 17B20, 17B30 - Abstract
A characterization of the finite-dimensional Leibniz algebras with an abelian subalgebra of codimension two over a field $\mathbb{F}$ of characteristic $p\neq2$ is given. In short, a finite-dimensional Leibniz algebra of dimension $n$ with an abelian subalgebra of codimension two is solvable and contains an abelian ideal of codimension at most two or it is a direct sum of a Lie one-dimensional solvable extension of the Heisenberg algebra $\mathfrak{h}(\mathbb{F})$ and $\mathbb{F}^{n-4}$ or a direct sum of a $3$-dimensional simple Lie algebra and $\mathbb{F}^{n-3}$ or a Leibniz one-dimensional solvable extension of the algebra $\mathfrak{h}(\mathbb{F}) \oplus \mathbb{F}^{n-4}$.
- Published
- 2024