Mehmet E. Sener, Owik Matthias Herold-Majumdar, Francisco J. Ruiz-Dueñas, Craig B. Faulds, Roland Ludwig, Victor Guallar, Sibel Kilic, Alessandra Piscitelli, Marta Tortajada, Willem J. H. van Berkel, Ana Serrano, Giovanni Sannia, Ana Gutiérrez, Henrik Lund, Morten Tovborg, María Lucas, Katrin Scheibner, Miguel Alcalde, José C. del Río, Elena Fernández-Fueyo, Susana Camarero, Ángel T. Martínez, René Ullrich, Jesper Vind, Ralf Zuhse, Jorge Rencoret, Christiane Liers, Jo-Anne Rasmussen, Eric Record, Martin Hofrichter, Dolores Linde, Cinzia Pezzella, Ib Winckelmann, Mirjana Gelo-Pujic, Frank Hollmann, Barcelona Supercomputing Center, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Novozymes A/S, Technische Universität Dresden (TUD), Jena University Hospital, Università degli Studi di Napoli Federico II, Università degli studi di Napoli Federico II, Setas Kimya Sanayi AS, Wageningen University and Research Center (WUR), Anaxomics, Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (BSC - CNS), Chiracon GmBH, Universität für Bodenkultur Wien [Vienne, Autriche] (BOKU), Department of Biotechnology [Delft], Delft University of Technology (TU Delft), Biodiversité et Biotechnologie Fongiques (BBF), Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Biopolis, Cheminova A/S, CLEA Technologies BV, Solvay, Instituto de Recursos Naturales y Agrobiología de Sevilla, Instituto de Catálisis y Petroleoquímica, European Project: 613549, European Commission, Ministerio de Economía y Competitividad (España), University of California, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Wageningen University and Research [Wageningen] (WUR), Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)-École Centrale de Marseille (ECM), Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), BIO2014-56388-R AGL2014-53730-R, H2020-BBI-PPP-2015-2-720297, DE-AC02-05CH11231, University of Naples Federico II = Università degli studi di Napoli Federico II, Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU), Martínez, Angel T, Ruiz Dueñas, Francisco J, Camarero, Susana, Serrano, Ana, Linde, Dolore, Lund, Henrik, Vind, Jesper, Tovborg, Morten, Herold Majumdar, Owik M, Hofrichter, Martin, Liers, Christiane, Ullrich, René, Scheibner, Katrin, Sannia, Giovanni, Piscitelli, Alessandra, Pezzella, Cinzia, Sener, Mehmet E, Kılıç, Sibel, van Berkel, Willem J. H, Guallar, Victor, Lucas, Maria Fátima, Zuhse, Ralf, Ludwig, Roland, Hollmann, Frank, Fernández Fueyo, Elena, Record, Eric, Faulds, Craig B, Tortajada, Marta, Winckelmann, Ib, Rasmussen, Jo Anne, Gelo Pujic, Mirjana, Gutiérrez, Ana, Del Río, José C, Rencoret, Jorge, and Alcalde, Miguel
17 páginas.-- 13 figuras.-- 104 referencias.-- . Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.biotechadv.2017.06.003, Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations., This work has been funded by the INDOX European project (KBBE-2013-7-613549), together with the BIO2014-56388-R and AGL2014-53730-R projects of the Spanish Ministry of Economy and Competitiveness (MINECO) co-financed by FEDER funds, and the BBI JU project EnzOx2 (H2020-BBI-PPP-2015-2-720297). The work conducted by the US DOE JGI was supported by the Office of Science of the US DOE under contract number DE-AC02-05CH11231.