1. Reactivity of atropaldehyde, a felbamate metabolite in human liver tissue in vitro.
- Author
-
Kapetanovic IM, Torchin CD, Strong JM, Yonekawa WD, Lu C, Li AP, Dieckhaus CM, Santos WL, Macdonald TL, Sofia RD, and Kupferberg HJ
- Subjects
- Aldehyde Dehydrogenase antagonists & inhibitors, Aldehyde Dehydrogenase metabolism, Aldehydes metabolism, Aldehydes pharmacology, Aldehydes toxicity, Anticonvulsants metabolism, Enzyme Inhibitors pharmacology, Felbamate, Glutathione Transferase antagonists & inhibitors, Glutathione Transferase metabolism, Humans, Liver enzymology, Liver metabolism, Microsomes, Liver drug effects, Microsomes, Liver enzymology, Microsomes, Liver metabolism, Phenylcarbamates, Propylene Glycols metabolism, Anticonvulsants toxicity, Liver drug effects, Propylene Glycols toxicity
- Abstract
Antiepileptic therapy with a broad spectrum drug felbamate (FBM) has been limited due to reports of hepatotoxicity and aplastic anemia associated with its use. It was proposed that a bioactivation of FBM leading to formation of alpha,beta-unsaturated aldehyde, atropaldehyde (ATPAL) could be responsible for toxicities associated with the parent drug. Other members of this class of compounds, acrolein and 4-hydroxynonenal (HNE), are known for their reactivity and toxicity. It has been proposed that the bioactivation of FBM to ATPAL proceeds though a more stable cyclized product, 4-hydroxy-5-phenyltetrahydro-1,3-oxazin-2-one (CCMF) whose formation has been shown recently. Aldehyde dehydrogenase (ALDH) and glutathione transferase (GST) are detoxifying enzymes and targets for reactive aldehydes. This study examined effects of ATPAL and its precursor, CCMF on ALDH, GST and cell viability in liver, the target tissue for its metabolism and toxicity. A known toxin, HNE, which is also a substrate for ALDH and GST, was used for comparison. Interspecies difference in metabolism of FBM is well documented, therefore, human tissue was deemed most relevant and used for these studies. ATPAL inhibited ALDH and GST activities and led to a loss of hepatocyte viability. Several fold greater concentrations of CCMF were necessary to demonstrate a similar degree of ALDH inhibition or cytotoxicity as observed with ATPAL. This is consistent with CCMF requiring prior conversion to the more proximate toxin, ATPAL. GSH was shown to protect against ALDH inhibition by ATPAL. In this context, ALDH and GST are detoxifying pathways and their inhibition would lead to an accumulation of reactive species from FBM metabolism and/or metabolism of other endogenous or exogenous compounds and predisposing to or causing toxicity. Therefore, mechanisms of reactive aldehydes toxicity could include direct interaction with critical cellular macromolecules or indirect interference with cellular detoxification mechanisms.
- Published
- 2002
- Full Text
- View/download PDF