14 results on '"Tolunay, Duygu"'
Search Results
2. Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass‐loss rate and stabilization
- Author
-
Sarneel, Judith M., primary, Hefting, Mariet M., additional, Sandén, Taru, additional, van den Hoogen, Johan, additional, Routh, Devin, additional, Adhikari, Bhupendra S., additional, Alatalo, Juha M., additional, Aleksanyan, Alla, additional, Althuizen, Inge H. J., additional, Alsafran, Mohammed H. S. A., additional, Atkins, Jeff W., additional, Augusto, Laurent, additional, Aurela, Mika, additional, Azarov, Aleksej V., additional, Barrio, Isabel C., additional, Beier, Claus, additional, Bejarano, María D., additional, Benham, Sue E., additional, Berg, Björn, additional, Bezler, Nadezhda V., additional, Björnsdóttir, Katrín, additional, Bolinder, Martin A., additional, Carbognani, Michele, additional, Cazzolla Gatti, Roberto, additional, Chelli, Stefano, additional, Chistotin, Maxim V., additional, Christiansen, Casper T., additional, Courtois, Pascal, additional, Crowther, Thomas W., additional, Dechoum, Michele S., additional, Djukic, Ika, additional, Duddigan, Sarah, additional, Egerton‐Warburton, Louise M., additional, Fanin, Nicolas, additional, Fantappiè, Maria, additional, Fares, Silvano, additional, Fernandes, Geraldo W., additional, Filippova, Nina V., additional, Fliessbach, Andreas, additional, Fuentes, David, additional, Godoy, Roberto, additional, Grünwald, Thomas, additional, Guzmán, Gema, additional, Hawes, Joseph E., additional, He, Yue, additional, Hero, Jean‐Marc, additional, Hess, Laura L., additional, Hogendoorn, Katja, additional, Høye, Toke T., additional, Jans, Wilma W. P., additional, Jónsdóttir, Ingibjörg S., additional, Keller, Sabina, additional, Kepfer‐Rojas, Sebastian, additional, Kuz'menko, Natalya N., additional, Larsen, Klaus S., additional, Laudon, Hjalmar, additional, Lembrechts, Jonas J., additional, Li, Junhui, additional, Limousin, Jean‐Marc, additional, Lukin, Sergey M., additional, Marques, Renato, additional, Marín, César, additional, McDaniel, Marshall D., additional, Meek, Qi, additional, Merzlaya, Genrietta E., additional, Michelsen, Anders, additional, Montagnani, Leonardo, additional, Mueller, Peter, additional, Murugan, Rajasekaran, additional, Myers‐Smith, Isla H., additional, Nolte, Stefanie, additional, Ochoa‐Hueso, Raúl, additional, Okafor, Bernard N., additional, Okorkov, Vladimir V., additional, Onipchenko, Vladimir G., additional, Orozco, María C., additional, Parkhurst, Tina, additional, Peres, Carlos A., additional, Petit Bon, Matteo, additional, Petraglia, Alessandro, additional, Pingel, Martin, additional, Rebmann, Corinna, additional, Scheffers, Brett R., additional, Schmidt, Inger, additional, Scholes, Mary C., additional, Sheffer, Efrat, additional, Shevtsova, Lyudmila K., additional, Smith, Stuart W., additional, Sofo, Adriano, additional, Stevenson, Pablo R., additional, Strouhalová, Barbora, additional, Sundsdal, Anders, additional, Sühs, Rafael B., additional, Tamene, Gebretsadik, additional, Thomas, Haydn J. D., additional, Tolunay, Duygu, additional, Tomaselli, Marcello, additional, Tresch, Simon, additional, Tucker, Dominique L., additional, Ulyshen, Michael D., additional, Valdecantos, Alejandro, additional, Vandvik, Vigdis, additional, Vanguelova, Elena I., additional, Verheyen, Kris, additional, Wang, Xuhui, additional, Yahdjian, Laura, additional, Yumashev, Xaris S., additional, and Keuskamp, Joost A., additional
- Published
- 2024
- Full Text
- View/download PDF
3. Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
- Author
-
Sarneel, Judith M., Hefting, Mariet M., Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H. J., Alsafran, Mohammed H. S. A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean-Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W. P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus S., Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean-Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., Keuskamp, Joost A., Sarneel, Judith M., Hefting, Mariet M., Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H. J., Alsafran, Mohammed H. S. A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean-Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W. P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus S., Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean-Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., and Keuskamp, Joost A.
- Abstract
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
- Published
- 2024
- Full Text
- View/download PDF
4. Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
- Author
-
Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Sarneel, Judith M., Hefting, Mariet, Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H. J., Alsafran, Mohammed H. S. A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean-Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W. P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus Steenberg, Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean-Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger Kappel, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., Keuskamp, Joost A., Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Sarneel, Judith M., Hefting, Mariet, Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H. J., Alsafran, Mohammed H. S. A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean-Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W. P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus Steenberg, Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean-Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger Kappel, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., and Keuskamp, Joost A.
- Abstract
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
- Published
- 2024
5. Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition
- Author
-
Sub Ecology and Biodiversity, Coastal dynamics, Fluvial systems and Global change, Ecology and Biodiversity, Tolunay, Duygu, Kowalchuk, George A., Erkens, Gilles, Hefting, Mariet M., Sub Ecology and Biodiversity, Coastal dynamics, Fluvial systems and Global change, Ecology and Biodiversity, Tolunay, Duygu, Kowalchuk, George A., Erkens, Gilles, and Hefting, Mariet M.
- Published
- 2024
6. Reading tea leaves worldwide:Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
- Author
-
Sarneel, Judith M., Hefting, Mariet M., Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H.J., Alsafran, Mohammed H.S.A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W.P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus S., Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., Keuskamp, Joost A., Sarneel, Judith M., Hefting, Mariet M., Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H.J., Alsafran, Mohammed H.S.A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W.P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus S., Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., and Keuskamp, Joost A.
- Abstract
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
- Published
- 2024
7. An affordable and reliable assessment of aquatic decomposition: Tailoring the Tea Bag Index to surface waters
- Author
-
Seelen, Laura M.S., Flaim, Giovanna, Keuskamp, Joost, Teurlincx, Sven, Arias Font, Raquel, Tolunay, Duygu, Fránková, Markéta, Šumberová, Kateřina, Temponeras, Maria, Lenhardt, Mirjana, Jennings, Eleanor, and de Senerpont Domis, Lisette N.
- Published
- 2019
- Full Text
- View/download PDF
8. Corrigendum to An affordable and reliable assessment of aquatic decomposition: Tailoring the Tea Bag Index to surface waters [Water Research (2019) 31--43]
- Author
-
Seelen, Laura M.S., Flaim, Giovanna, Keuskamp, Joost, Teurlincx, Sven, Font, Raquel Arias, Tolunay, Duygu, Fránková, Markéta, Šumberová, Kateřina, Temponeras, Maria, Lenhardt, Mirjana, Jennings, Eleanor, and Domis, Lisette N. de Senerpont
- Published
- 2021
- Full Text
- View/download PDF
9. An affordable and reliable assessment of aquatic decomposition: Tailoring the Tea Bag Index to surface waters
- Author
-
Sub Ecology and Biodiversity, Ecology and Biodiversity, Seelen, Laura M.S., Flaim, Giovanna, Keuskamp, Joost, Teurlincx, Sven, Arias Font, Raquel, Tolunay, Duygu, Fránková, Markéta, Šumberová, Kateřina, Temponeras, Maria, Lenhardt, Mirjana, Jennings, Eleanor, de Senerpont Domis, Lisette N., Sub Ecology and Biodiversity, Ecology and Biodiversity, Seelen, Laura M.S., Flaim, Giovanna, Keuskamp, Joost, Teurlincx, Sven, Arias Font, Raquel, Tolunay, Duygu, Fránková, Markéta, Šumberová, Kateřina, Temponeras, Maria, Lenhardt, Mirjana, Jennings, Eleanor, and de Senerpont Domis, Lisette N.
- Published
- 2019
10. Impacts of extreme meteorological events on metabolism of Lake Eymir using high frequency automated lake observation station
- Author
-
Tolunay, Duygu, Beklioğlu, Meryem, and Biyoloji Anabilim Dalı
- Subjects
Freshwater ecology ,Biology ,Eymir lake ,Biyoloji - Abstract
Eylül 2015 ve Ağustos 2016 yılları arasında, Eymir Gölü'ne tesis edilen yüksek çözünürlüklü otomatik göl izleme istastonundan alınan veriler ile günlük oksijen değişiminden göl metabolisması hesabı yapılmıştır. Tahmin edilen toplam birincil üretim (GPP), solunum (RES) ve net ekosistem üretimi (NEP) ile Eymir Gölü'nün karbon döngüsündeki rolü ve şiddetli meteorolojik olaylara verdiği tepkiler değerlendirilmiştir. Buna ek olarak, farklı yaklaşımları karşılaştırmak için yedi farklı k600 metodu ve beş metbolizma modeli kullanılmıştır.Elde edilen sonuçlara göre, Eymir Gölü uzun süreden beri ötrofik statüde olmasına rağmen yıl boyunca alg artışı olduğu dönemler haricinde atmosfere karbon salınımı yapmaktadır. Fırtınalar, sıcaklık tabakalaşmasını ortadan kaldırmış; epilimniondaki klorofil-a konsantrasyonunun azalmasına, flurosan çözünmüş organik madde miktarının artmasına yol açmış, göldeki karbon salınımını tetiklemiştir. Ayrıca gölün karışması, model girdilerinden kaynaklanması muhtemel metabolizma tahminlerinde hatalı sonuçlar vermiştir Buna ek olarak piston hızı metodları arasında farklılık daha belirgin iken metabolizma modellerinde bu fark fazla gözlemlenmemiştir. One year measurements between September 2015 and August 2016 from high frequency automated lake observation station were collected to estimate metabolism of Lake Eymir based on diel oxygen changes. Estimated gross primary production (GPP), respiration (RES) and net ecosystem production (NEP) were used to assess the role of Lake Eymir in carbon cycling and the response of lake ecosystem to extreme meteorological events. In addition to compare different approaches seven distinct k600 methods and five metabolism models were used.According to results, even Lake Eymir has been experiencing eutrophication more than 20 years, the lake acts as carbon source to atmosphere throughout the year except the algal bloom periods. Despite the fact that, during extreme wind events, disruption of thermal stratification induced emission of CO2, mixing of the lake increased unrealistic estimations of metabolism probably due to lack of model inputs. In addition, it has been found that results of piston velocity methods vary more than the results of metabolism models. 86
- Published
- 2018
11. Data from: An affordable and reliable assessment of aquatic decomposition: tailoring the Tea Bag Index to surface waters
- Author
-
Seelen, Laura, Flaim, Giovanna, Keuskamp, Joost, Teurlincx, Sven, Arias Font, Raquel, Tolunay, Duygu, Fránková, Markéta, Šumberová, Kateřina, Temponeras, Maria, Lenhardt, Mirjana, Jennings, Eleanor, de Senerpont Domis, L.N., Seelen, Laura, Flaim, Giovanna, Keuskamp, Joost, Teurlincx, Sven, Arias Font, Raquel, Tolunay, Duygu, Fránková, Markéta, Šumberová, Kateřina, Temponeras, Maria, Lenhardt, Mirjana, Jennings, Eleanor, and de Senerpont Domis, L.N.
- Abstract
Litter decomposition is a vital part of the global carbon cycle as it determines not only the amount of carbon to be sequestered, but also how fast carbon re-enters the cycle. Freshwater systems play an active role in the carbon cycle as it receives, and decomposes, terrestrial litter material alongside decomposing aquatic plant litter. Decomposition of organic matter in the aquatic environment is directly controlled by water temperature and nutrient availability, which are continuously affected by global change. We adapted the Tea Bag Index (TBI), a highly standardized methodology for determining soil decomposition, for lakes by incorporating a leaching factor. By placing Lipton pyramid tea bags in the aquatic environment for 3 hours, we quantified the period of intense leaching which usually takes place prior to litter (tea) decomposition. Standard TBI methodology was followed after this step to determine how fast decomposition takes place (decomposition rate, k1) and how much of the material cannot be broken down and is thus sequestered (stabilization factor, S). A Citizen Science project was organized to test the aquatic TBI in 40 European lakes located in four climate zones, ranging from oligotrophic to hypereutrophic systems. We expected that warmer and/or eutrophic lakes would have a higher decomposition rate and a more efficient microbial community resulting in less tea material to be sequestered. The overall high decomposition rates (k1) found confirm the active role lakes play in the global carbon cycle. Across climate regions the lakes in the warmer temperate zone displayed a higher decomposition rate (k1) compared to the colder lakes in the continental and polar zones. Across trophic states, decomposition rates were higher in eutrophic lakes compared to oligotrophic lakes. Additionally, the eutrophic lakes showed a higher stabilization (S), thus a less efficient microbial community, compared to the oligotrophic lakes, although the variation within this g
- Published
- 2018
12. Mating in the box jellyfish Copula sivickisi-Novel function of cnidocytes
- Author
-
Garm, Anders Lydik, Lebouvier, Marion, Tolunay, Duygu, Garm, Anders Lydik, Lebouvier, Marion, and Tolunay, Duygu
- Published
- 2015
13. Mating in the box jellyfish Copula sivickisi—Novel function of cnidocytes
- Author
-
Garm, Anders, primary, Lebouvier, Marion, additional, and Tolunay, Duygu, additional
- Published
- 2015
- Full Text
- View/download PDF
14. Mating in the box jellyfish C opula sivickisi-Novel function of cnidocytes.
- Author
-
Garm, Anders, Lebouvier, Marion, and Tolunay, Duygu
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.