Albertus Viljoen, Yann Guérardel, Alexandre Mery, Maju Joe, Laurent Kremer, Sydney A. Villaume, Emeline Fabre, Christophe Mariller, Kaoru Takegawa, Stéphane P. Vincent, Lin Shen, Todd L. Lowary, Iman Halloum, Loïc P. Chêne, Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 [UGSF], Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576, Institut de Recherche en Infectiologie de Montpellier [IRIM], Université de Namur [Namur] [UNamur], University of Alberta, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 [UGSF], Kyushu University, Institut National de la Santé et de la Recherche Médicale [INSERM], Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Bio-Organic [Namur, Belgium], Université de Namur [Namur] (UNamur), Dynamique des interactions membranaires normales et pathologiques (DIMNP), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université Montpellier 1 (UM1), Kyushu University [Fukuoka], Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Université de Namur [Namur], Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Kremer, Laurent
International audience; Despite the impressive progress made over the past 20 years in our understanding of mycolylarabinogalactan-peptidoglycan (mAGP) biogenesis, the mechanisms by which the tubercle bacillus Mycobacterium tuberculosis adapts its cell wall structure and /composition in response to various environmental conditions, especially during infection, remain poorly understood. Being the central portion of the mAGP complex, arabinogalactan (AG) is believed to be the constituent of the mycobacterial cell envelope that undergoes the least structural changes in its structure, but no reports exist supportings this assumption. Herein, using [MS2] recombinantly expressed mycobacterial protein, bioinformatics analyses, and kinetic and biochemical assays, we demonstrate that the AG can be remodeled by a mycobacterial endogenous enzyme. In particular, we identified found that the mycobacterial protein GlfH1 (Rv3096), which protein exhibits an exo-β-D-galactofuranose hydrolase activity and is capable of hydrolyzing the galactan chain of AG by recurrent cleavage of the terminal β-(1,5) and β-(1,6)-Galf linkages. The characterization of this galactosidase represents the a first step towards understanding the remodeling of mycobacterial AG.