1. The association of tobacco smoking and metabolite levels in the anterior cingulate cortex of first-episode psychosis patients: A case-control and 6-month follow-up 1 H-MRS study.
- Author
-
Koster M, van der Pluijm M, van de Giessen E, Schrantee A, van Hooijdonk CFM, Selten JP, Booij J, de Haan L, Ziermans T, and Vermeulen J
- Subjects
- Humans, Male, Female, Adult, Young Adult, Case-Control Studies, Follow-Up Studies, Glutamine metabolism, Cross-Sectional Studies, Adolescent, Gyrus Cinguli metabolism, Gyrus Cinguli diagnostic imaging, Psychotic Disorders metabolism, Proton Magnetic Resonance Spectroscopy, Choline metabolism, Glutamic Acid metabolism, Tobacco Smoking metabolism
- Abstract
Tobacco smoking is highly prevalent among patients with psychosis and associated with worse clinical outcomes. Neurometabolites, such as glutamate and choline, are both implicated in psychosis and tobacco smoking. However, the specific associations between smoking and neurometabolites have yet to be investigated in patients with psychosis. The current study examines associations of chronic smoking and neurometabolite levels in the anterior cingulate cortex (ACC) in first-episode psychosis (FEP) patients and controls. Proton magnetic resonance spectroscopy (
1 H MRS) data of 59 FEP patients and 35 controls were analysed. Associations between smoking status (i.e., smoker yes/no) or cigarettes per day and Glx (glutamate + glutamine, as proxy for glutamate) and total choline (tCh) levels were assessed at baseline in both groups separately. For patients, six months follow-up data were acquired for multi-cross-sectional analysis using linear mixed models. No significant differences in ACC Glx levels were found between smoking (n = 28) and non-smoking (n = 31) FEP patients. Smoking patients showed lower tCh levels compared to non-smoking patients at baseline, although not surving multiple comparisons correction, and in multi-cross-sectional analysis (pFDR = 0.08 and pFDR = 0.044, respectively). Negative associations were observed between cigarettes smoked per day, and ACC Glx (pFDR = 0.02) and tCh levels (pFDR = 0.02) in controls. Differences between patients and controls regarding Glx might be explained by pre-existing disease-related glutamate deficits or alterations at nicotine acetylcholine receptor level, resulting in differences in tobacco-related associations with neurometabolites. Additionally, observed alterations in tCh levels, suggesting reduced cellular proliferation processes, might result from exposure to the neurotoxic effects of smoking., Competing Interests: Declaration of competing interest None., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF