1. Floquet-Bloch Valleytronics
- Author
-
Fragkos, Sotirios, Fabre, Baptiste, Tkach, Olena, Petit, Stéphane, Descamps, Dominique, Schönhense, Gerd, Mairesse, Yann, Schüler, Michael, and Beaulieu, Samuel
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Driving quantum materials out-of-equilibrium makes it possible to generate states of matter inaccessible through standard equilibrium tuning methods. Upon time-periodic coherent driving of electrons using electromagnetic fields, the emergence of Floquet-Bloch states enables the creation and control of exotic quantum phases. In transition metal dichalcogenides, broken inversion symmetry within each monolayer results in a non-zero Berry curvature at the K and K$^{\prime}$ valley extrema, giving rise to chiroptical selection rules that are fundamental to valleytronics. Here, we bridge the gap between these two concepts and introduce Floquet-Bloch valleytronics. Using time- and polarization-resolved extreme ultraviolet momentum microscopy combined with state-of-the-art ab initio theory, we demonstrate the formation of valley-polarized Floquet-Bloch states in 2H-WSe$_2$ upon below-bandgap coherent electron driving with chiral light pulses. We investigate quantum path interference between Floquet-Bloch and Volkov states, showing that this interferometric process depends on the valley pseudospin and light polarization-state. Conducting extreme ultraviolet photoemission circular dichroism in these nonequilibrium settings reveals the potential for controlling the orbital character of Floquet-engineered states. These findings link Floquet engineering and quantum geometric light-matter coupling in two-dimensional materials. They can serve as a guideline for reaching novel out-of-equilibrium phases of matter by dynamically breaking symmetries through coherent dressing of winding Bloch electrons with tailored light pulses.
- Published
- 2024