1. Negative non-Gaussianity as a salvager for PBHs with PTAs in bounce
- Author
-
Choudhury, Sayantan, Dey, Kritartha, Ganguly, Siddhant, Karde, Ahaskar, Singh, Swapnil Kumar, and Tiwari, Pranjal
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
Non-Gaussianity in the primordial curvature perturbation is a crucial element of the early universe due to its significant impact on the primordial black hole (PBH) production. In this work, we focus on the effects of negative non-Gaussianity on PBH abundance through the lens of the compaction function criterion for PBH formation. Our setup utilizes an effective field theory of non-singular bounce, including the standard slow-roll inflation with an ultra-slow roll phase for amplifying the curvature perturbations to form PBHs. We investigate with two separate values of the non-Gaussianity parameter, $f_{\rm NL}=(-39.95,-35/8)$, found within the ekpyrotic contraction and the matter bounce scenarios, respectively, and show that a negatively large amount of $f_{\rm NL}$ can provide sizeable abundance, $10^{-3}\leq f_{\rm PBH}\leq 1$, and completely mitigates the PBH overproduction issue. We also highlight that the case with the effective sound speed $c_{s}=1$, coupled with $f_{\rm NL}=-39.95$, provides an agreement under $1\sigma$ for the scalar-induced gravitational wave explanation of the latest PTA (NANOGrav15 and EPTA) signal. Lastly, we extract an upper bound on the most negative value of, $f_{\rm NL}\sim -60$, below which we show breaching of the underlying perturbativity constraints on the power spectrum amplitude., Comment: 51 pages, 6 figures, 2 tables, Comments are welcome, Reference list updated
- Published
- 2024