4 results on '"Titine Ruiter"'
Search Results
2. Effects of hyperinsulinemia on pancreatic cancer development and the immune microenvironment revealed through single-cell transcriptomics
- Author
-
Anni M. Y. Zhang, Ken H. Chu, Brian F. Daly, Titine Ruiter, Yan Dou, Jenny C. C. Yang, Twan J. J. de Winter, Justin Chhuor, Su Wang, Stephane Flibotte, Yiwei Bernie Zhao, Xiaoke Hu, Hong Li, Elizabeth J. Rideout, David F. Schaeffer, James D. Johnson, and Janel L. Kopp
- Subjects
Pancreatic intraepithelial neoplasia ,Pancreatic ductal adenocarcinoma ,Insulin ,Obesity ,Type 2 diabetes ,Single-cell RNA sequencing ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Hyperinsulinemia is independently associated with increased risk and mortality of pancreatic cancer. We recently reported that genetically reduced insulin production resulted in ~ 50% suppression of pancreatic intraepithelial neoplasia (PanIN) precancerous lesions in mice. However, only female mice remained normoglycemic, and only the gene dosage of the rodent-specific Ins1 alleles was tested in our previous model. Moreover, we did not delve into the molecular and cellular mechanisms associated with modulating hyperinsulinemia. Methods We studied how reduced Ins2 gene dosage affects PanIN lesion development in both male and female Ptf1a CreER;Kras LSL-G12D mice lacking the rodent-specific Ins1 gene (Ins1 -/-). We generated control mice having two alleles of the wild-type Ins2 gene (Ptf1a CreER;Kras LSL-G12D;Ins1 -/-;Ins2 +/+) and experimental mice having one allele of Ins2 gene (Ptf1a CreER;Kras LSL-G12D;Ins1 -/-;Ins2 +/-). We then performed thorough histopathological analyses and single-cell transcriptomics for both genotypes and sexes. Results High-fat diet–induced hyperinsulinemia was transiently or modestly reduced in female and male mice, respectively, with only one allele of Ins2. This occurred without dramatically affecting glucose tolerance. Genetic reduction of insulin production resulted in mice with a tendency for less PanIN and acinar-to-ductal metaplasia (ADM) lesions. Using single-cell transcriptomics, we found hyperinsulinemia affected multiple cell types in the pancreas, with the most statistically significant effects on local immune cell types that were highly represented in our sampled cell population. Specifically, hyperinsulinemia modulated pathways associated with protein translation, MAPK-ERK signaling, and PI3K-AKT signaling, which were changed in epithelial cells and subsets of immune cells. Conclusions These data suggest a potential role for the immune microenvironment in hyperinsulinemia-driven PanIN development. Together with our previous work, we propose that mild suppression of insulin levels may be useful in preventing pancreatic cancer by acting on multiple cell types.
- Published
- 2022
- Full Text
- View/download PDF
3. MLL (KMT2A)-rearranged Acute Lymphoblastic Leukemias Are Addicted to S-Adenosyl Methionine (SAM): Implications for Therapy
- Author
-
Trisha Tee, Titine Ruiter, Danique Wajon, Shuiyan Wu, Ahmed Dahaoui, Dorette S van Ingen Schenau, Laurens T van der Meer, and Frank N van Leeuwen
- Subjects
Immunology ,Cell Biology ,Hematology ,Biochemistry - Published
- 2022
4. Methionine Restriction As a Novel Therapeutic Strategy for MLL (KMT2A)-Rearranged Acute Lymphoblastic Leukemia
- Author
-
Frank N. van Leeuwen, Ahmed Dahaoui, Dorette van Ingen Schenau, Laurens T. van der Meer, Rico Hagelaar, Titine Ruiter, and Trisha M Tee
- Subjects
Methionine ,biology ,business.industry ,Lymphoblastic Leukemia ,Immunology ,Cell Biology ,Hematology ,Biochemistry ,chemistry.chemical_compound ,KMT2A ,chemistry ,Cancer research ,biology.protein ,Medicine ,business ,Therapeutic strategy - Abstract
Background: MLL (KMT2A)-rearranged acute lymphoblastic leukemia (MLLr ALL) is a rare but aggressive subset that represents 5% of childhood ALL cases, and accounts for about 70% of infant leukemias. While overall survival in these young children is around 50%, after relapse, MLLr ALL becomes an almost incurable disease, highlighting the urgent clinical need for new strategies for this patient group. The histone methyl transferase function of the MLL fusion protein complex requires the methionine metabolite s-adenosylmethionine (SAM) as methyl donor, suggesting a selective sensitivity of MLL-r ALL for perturbations in methionine availability. Recent studies in solid tumor models suggest clinical utility of methionine restricted diets or oral administration of methionine depleting enzyme Methionine Gamma Lyase (MGL) to be safe and effective. Therefore, we explored the effect of methionine restriction (MR) as a potential, new therapy for MLLr ALL. Methods: We compared the effects of MR on metabolic activity and viability between MLLr and non-MLLr pre-BCP ALL cell lines using enzymatic depletion, small molecule inhibitors targeting methionine metabolism, and restrictive culture conditions. To identify intrinsic metabolic differences between MLLr and non-MLLr cells and explore how MR impinges on their metabolic state, we performed global metabolomics on MLLr SEM cells and non-MLLr NALM6 cells cultured with complete depletion of methionine. Additionally, we used RNA sequencing to assess the global effects of MR on gene expression, and a CRISPR/Cas9-based reverse genetic screen to identify sensitizers towards MR. Results were validated in vitro using targeted knockouts and small-molecule inhibitors, as well as in vivo using a 95% methionine restricted diet. Immunocompromised mice were engrafted with MLLr SEM cells and 7 days after transplantation, mice were randomized to control or 95% MR diet. Leukemia progression was monitored by flowcytometric detection of human lymphocytes in the blood. Results: We observed that depletion of methionine reduces metabolic activity in almost all BCP-ALL (B-ALL) cell lines, however, only in MLLr B-ALL cell lines was rapid apoptosis induced (Figure 1A). Global metabolic profiling revealed significant basal metabolic differences, of note being SAM, whose levels were approximately 5-fold higher in MLLr SEM cells compared to non-MLLr NALM6 cells. Consistent with this, addition of SAM completely rescued MLLr cell lines from methionine depletion induced apoptosis, an effect not observed in non-MLLr cells (Figure 1A). Metabolomic profiling also highlighted different salvage mechanisms at play in NALM6 cells, with the folate cycle and polyamine synthesis pathway being activated upon MR. Together, these results indicate that MLLr B-ALL cells are selectively sensitive to MR. In line with this, RNASeq data showed significant decreased expression of several known MLL fusion target genes such as PROM1, HOXA10, and MEIS1 in response to MR. To obtain further insight into the pathways involved in the response to MR and to identify potential therapeutic targets that further sensitize cells to MR, we performed a CRISPR/Cas9-based screen. This identified three members of the Bromodomain- and extra-terminal domain (BET) family as potential modifiers of the response to MR in SEM cells. Indeed, RNAseq analysis showed that Myc activity as a proxy of BRD4 function, was strongly suppressed by MR. Finally, preliminary results show the efficacy of dietary intervention alone on leukemia progression. We observe with 95% MR diet, significant delays on leukemic growth (Figure 1B). Moreover, the MR diet was well tolerated, as indicated by minimal weight loss after two months. Although further studies are needed, we anticipate that targeting epigenetic regulators or use of conventional therapies in combination with MR would further potentiate this effect. Conclusions: MLLr leukemic cells have an increased dependency on S-adenosylmethionine and therefore show increased vulnerability to methionine depletion. Limiting methionine availability, either by enzymatic methionine depletion or dietary restriction could provide a novel therapeutic option for this patient group, particularly when combined with other therapies. The availability of an FDA approved methionine-free formula facilitates rapid translation to clinical practice, particularly in infants. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.