24 results on '"Tilak MK"'
Search Results
2. Transcriptomic Data Reveal Divergent Paths of Chitinase Evolution Underlying Dietary Convergence in Anteaters and Pangolins.
- Author
-
Allio R, Teullet S, Lutgen D, Magdeleine A, Koual R, Tilak MK, de Thoisy B, Emerling CA, Lefébure T, and Delsuc F
- Subjects
- Animals, Pangolins genetics, Diet, Salivary Glands metabolism, Biological Evolution, Phylogeny, Eutheria genetics, Chitinases genetics, Chitinases metabolism, Transcriptome, Evolution, Molecular
- Abstract
Ant-eating mammals represent a textbook example of convergent evolution. Among them, anteaters and pangolins exhibit the most extreme convergent phenotypes with complete tooth loss, elongated skulls, protruding tongues, and hypertrophied salivary glands producing large amounts of saliva. However, comparative genomic analyses have shown that anteaters and pangolins differ in their chitinase acidic gene (CHIA) repertoires, which potentially degrade the chitinous exoskeletons of ingested ants and termites. While the southern tamandua (Tamandua tetradactyla) harbors four functional CHIA paralogs (CHIA1-4), Asian pangolins (Manis spp.) have only one functional paralog (CHIA5). Here, we performed a comparative transcriptomic analysis of salivary glands in 33 placental species, including 16 novel transcriptomes from ant-eating species and close relatives. Our results suggest that salivary glands play an important role in adaptation to an insect-based diet, as expression of different CHIA paralogs is observed in insectivorous species. Furthermore, convergently evolved pangolins and anteaters express different chitinases in their digestive tracts. In the Malayan pangolin, CHIA5 is overexpressed in all major digestive organs, whereas in the southern tamandua, all four functional paralogs are expressed, at very high levels for CHIA1 and CHIA2 in the pancreas and for CHIA3 and CHIA4 in the salivary glands, stomach, liver, and pancreas. Overall, our results demonstrate that divergent molecular mechanisms within the chitinase acidic gene family underlie convergent adaptation to the ant-eating diet in pangolins and anteaters. This study highlights the role of historical contingency and molecular tinkering of the chitin digestive enzyme toolkit in this classic example of convergent evolution., (© The Author(s) 2025. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2025
- Full Text
- View/download PDF
3. Exon capture museomics deciphers the nine-banded armadillo species complex and identifies a new species endemic to the Guiana Shield.
- Author
-
Barthe M, Rancilhac L, Arteaga MC, Feijó A, Tilak MK, Justy F, Loughry WJ, McDonough CM, de Thoisy B, Catzeflis F, Billet G, Hautier L, Nabholz B, and Delsuc F
- Abstract
The nine-banded armadillo (Dasypus novemcinctus) is the most widespread xenarthran species across the Americas. Recent studies have suggested it is composed of four morphologically and genetically distinct lineages of uncertain taxonomic status. To address this issue, we used a museomic approach to sequence 80 complete mitogenomes and capture 997 nuclear loci for 71 Dasypus individuals sampled across the entire distribution. We carefully cleaned up potential genotyping errors and cross contaminations that could blur species boundaries by mimicking gene flow. Our results unambiguously support four distinct lineages within the D. novemcinctus complex. We found cases of mito-nuclear phylogenetic discordance but only limited contemporary gene flow confined to the margins of the lineage distributions. All available evidence including the restricted gene flow, phylogenetic reconstructions based on both mitogenomes and nuclear loci, and phylogenetic delimitation methods consistently supported the four lineages within D. novemcinctus as four distinct species. Comparable genetic differentiation values to other recognized Dasypus species further reinforced their status as valid species. Considering congruent morphological results from previous studies, we provide an integrative taxonomic view to recognise four species within the D. novemcinctus complex: D. novemcinctus, D. fenestratus, D. mexicanus, and D. guianensis sp. nov., a new species endemic of the Guiana Shield that we describe here. The two available individuals of D. mazzai and D. sabanicola were consistently nested within D. novemcinctus lineage and their status remains to be assessed. The present work offers a case study illustrating the power of museomics to reveal cryptic species diversity within a widely distributed and emblematic species of mammals., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Society of Systematic Biologists.)
- Published
- 2024
- Full Text
- View/download PDF
4. Genomics of the relict species Baronia brevicornis sheds light on its demographic history and genome size evolution across swallowtail butterflies.
- Author
-
Marino A, Reboud EL, Chevalier E, Tilak MK, Contreras-Garduño J, Nabholz B, and Condamine FL
- Subjects
- Animals, Genome Size, Phylogeny, DNA Transposable Elements genetics, Genomics, Demography, Butterflies genetics
- Abstract
Relict species, like coelacanth, gingko, tuatara, are the remnants of formerly more ecologically and taxonomically diverse lineages. It raises the questions of why they are currently species-poor, have restrained ecology, and are often vulnerable to extinction. Estimating heterozygosity level and demographic history can guide our understanding of the evolutionary history and conservation status of relict species. However, few studies have focused on relict invertebrates compared to vertebrates. We sequenced the genome of Baronia brevicornis (Lepidoptera: Papilionidae), which is an endangered species, the sister species of all swallowtail butterflies, and is the oldest lineage of all extant butterflies. From a dried specimen, we were able to generate both long-read and short-read data and assembled a genome of 406 Mb for Baronia. We found a fairly high level of heterozygosity (0.58%) compared to other swallowtail butterflies, which contrasts with its endangered and relict status. Taking into account the high ratio of recombination over mutation, demographic analyses indicated a sharp decline of the effective population size initiated in the last million years. Moreover, the Baronia genome was used to study genome size variation in Papilionidae. Genome sizes are mostly explained by transposable elements activities, suggesting that large genomes appear to be a derived feature in swallowtail butterflies as transposable elements activity is recent and involves different transposable elements classes among species. This first Baronia genome provides a resource for assisting conservation in a flagship and relict insect species as well as for understanding swallowtail genome evolution., Competing Interests: Conflicts of interest statement The authors declare no conflict of interest., (© The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
5. Pangolin Genomes Offer Key Insights and Resources for the World's Most Trafficked Wild Mammals.
- Author
-
Heighton SP, Allio R, Murienne J, Salmona J, Meng H, Scornavacca C, Bastos ADS, Njiokou F, Pietersen DW, Tilak MK, Luo SJ, Delsuc F, and Gaubert P
- Subjects
- Animals, Genome, Phylogeny, Genomics, Pangolins genetics, Mammals genetics
- Abstract
Pangolins form a group of scaly mammals that are trafficked at record numbers for their meat and purported medicinal properties. Despite their conservation concern, knowledge of their evolution is limited by a paucity of genomic data. We aim to produce exhaustive genomic resources that include 3,238 orthologous genes and whole-genome polymorphisms to assess the evolution of all eight extant pangolin species. Robust orthologous gene-based phylogenies recovered the monophyly of the three genera and highlighted the existence of an undescribed species closely related to Southeast Asian pangolins. Signatures of middle Miocene admixture between an extinct, possibly European, lineage and the ancestor of Southeast Asian pangolins, provide new insights into the early evolutionary history of the group. Demographic trajectories and genome-wide heterozygosity estimates revealed contrasts between continental versus island populations and species lineages, suggesting that conservation planning should consider intraspecific patterns. With the expected loss of genomic diversity from recent, extensive trafficking not yet realized in pangolins, we recommend that populations be genetically surveyed to anticipate any deleterious impact of the illegal trade. Finally, we produce a complete set of genomic resources that will be integral for future conservation management and forensic endeavors for pangolins, including tracing their illegal trade. These comprise the completion of whole-genomes for pangolins through the hybrid assembly of the first reference genome for the giant pangolin (Smutsia gigantea) and new draft genomes (∼43x-77x) for four additional species, as well as a database of orthologous genes with over 3.4 million polymorphic sites., Competing Interests: Conflict of interest statement. The authors declare no competing/conflict of interests., (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
6. Genomics, Population Divergence, and Historical Demography of the World's Largest and Endangered Butterfly, The Queen Alexandra's Birdwing.
- Author
-
Reboud EL, Nabholz B, Chevalier E, Tilak MK, Bito D, and Condamine FL
- Subjects
- Animals, Metagenomics, Demography, Genomics, Genome, Butterflies genetics
- Abstract
The world's largest butterfly is the microendemic Papua New Guinean Ornithoptera alexandrae. Despite years of conservation efforts to protect its habitat and breed this up-to-28-cm butterfly, this species still figures as endangered in the IUCN Red List and is only known from two allopatric populations occupying a total of only ∼140 km². Here we aim at assembling reference genomes for this species to investigate its genomic diversity, historical demography and determine whether the population is structured, which could provide guidance for conservation programs attempting to (inter)breed the two populations. Using a combination of long and short DNA reads and RNA sequencing, we assembled six reference genomes of the tribe Troidini, with four annotated genomes of O. alexandrae and two genomes of related species Ornithoptera priamus and Troides oblongomaculatus. We estimated the genomic diversity of the three species, and we proposed scenarios for the historical population demography using two polymorphism-based methods taking into account the characteristics of low-polymorphic invertebrates. Indeed, chromosome-scale assemblies reveal very low levels of nuclear heterozygosity across Troidini, which appears to be exceptionally low for O. alexandrae (lower than 0.01%). Demographic analyses demonstrate low and steadily declining Ne throughout O. alexandrae history, with a divergence into two distinct populations about 10,000 years ago. These results suggest that O. alexandrae distribution has been microendemic for a long time. It should also make local conservation programs aware of the genomic divergence of the two populations, which should not be ignored if any attempt is made to cross the two populations., (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
7. Island songbirds as windows into evolution in small populations.
- Author
-
Leroy T, Rousselle M, Tilak MK, Caizergues AE, Scornavacca C, Recuerda M, Fuchs J, Illera JC, De Swardt DH, Blanco G, Thébaud C, Milá B, and Nabholz B
- Subjects
- Animals, Genetic Drift, Genetic Variation, Population Density, Selection, Genetic, Evolution, Molecular, Genetics, Population, Songbirds genetics
- Abstract
Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation.
1 , 2 Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (1) lower genetic diversity, (2) less effective natural selection against slightly deleterious mutations,3 , 4 and (3) a lower rate of adaptive evolution.5-8 Here, we have used a large set of newly sequenced and published whole-genome sequences of Passerida species (14 insular and 11 continental) to test these predictions. We confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2020 Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
8. High-quality carnivoran genomes from roadkill samples enable comparative species delineation in aardwolf and bat-eared fox.
- Author
-
Allio R, Tilak MK, Scornavacca C, Avenant NL, Kitchener AC, Corre E, Nabholz B, and Delsuc F
- Subjects
- Animals, High-Throughput Nucleotide Sequencing veterinary, Nanopore Sequencing veterinary, Foxes classification, Foxes genetics, Genetic Variation, Genome, Hyaenidae classification, Hyaenidae genetics
- Abstract
In a context of ongoing biodiversity erosion, obtaining genomic resources from wildlife is essential for conservation. The thousands of yearly mammalian roadkill provide a useful source material for genomic surveys. To illustrate the potential of this underexploited resource, we used roadkill samples to study the genomic diversity of the bat-eared fox ( Otocyon megalotis ) and the aardwolf ( Proteles cristatus ), both having subspecies with similar disjunct distributions in Eastern and Southern Africa. First, we obtained reference genomes with high contiguity and gene completeness by combining Nanopore long reads and Illumina short reads. Then, we showed that the two subspecies of aardwolf might warrant species status ( P. cristatus and P. septentrionalis ) by comparing their genome-wide genetic differentiation to pairs of well-defined species across Carnivora with a new Genetic Differentiation index (GDI) based on only a few resequenced individuals. Finally, we obtained a genome-scale Carnivora phylogeny including the new aardwolf species., Competing Interests: RA, MT, CS, NA, AK, EC, BN, FD No competing interests declared, (© 2021, Allio et al.)
- Published
- 2021
- Full Text
- View/download PDF
9. Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals.
- Author
-
Rousselle M, Simion P, Tilak MK, Figuet E, Nabholz B, and Galtier N
- Subjects
- Animals, Birds genetics, Insecta genetics, Mammals genetics, Models, Genetic, Mollusca genetics, Open Reading Frames, Time, Adaptation, Physiological, Mutation Rate, Polymorphism, Genetic
- Abstract
Whether adaptation is limited by the beneficial mutation supply is a long-standing question of evolutionary genetics, which is more generally related to the determination of the adaptive substitution rate and its relationship with species effective population size (Ne) and genetic diversity. Empirical evidence reported so far is equivocal, with some but not all studies supporting a higher adaptive substitution rate in large-Ne than in small-Ne species. We gathered coding sequence polymorphism data and estimated the adaptive amino-acid substitution rate ωa, in 50 species from ten distant groups of animals with markedly different population mutation rate θ. We reveal the existence of a complex, timescale dependent relationship between species adaptive substitution rate and genetic diversity. We find a positive relationship between ωa and θ among closely related species, indicating that adaptation is indeed limited by the mutation supply, but this was only true in relatively low-θ taxa. In contrast, we uncover no significant correlation between ωa and θ at a larger taxonomic scale, suggesting that the proportion of beneficial mutations scales negatively with species' long-term Ne., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
10. Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily.
- Author
-
Courcelle M, Tilak MK, Leite YLR, Douzery EJP, and Fabre PH
- Subjects
- Animals, Base Sequence, Bayes Theorem, Brazil, Evolution, Molecular, Exons genetics, Sequence Analysis, DNA, West Indies, Phylogeny, Rodentia classification, Rodentia genetics
- Abstract
Next generation sequencing (NGS) and genomic database mining allow biologists to gather and select large molecular datasets well suited to address phylogenomics and molecular evolution questions. Here we applied this approach to a mammal family, the Echimyidae, for which generic relationships have been difficult to recover and often referred to as a star phylogeny. These South-American spiny rats represent a family of caviomorph rodents exhibiting a striking diversity of species and life history traits. Using a NGS exon capture protocol, we isolated and sequenced ca. 500 nuclear DNA exons for 35 species belonging to all major echimyid and capromyid clades. Exons were carefully selected to encompass as much diversity as possible in terms of rate of evolution, heterogeneity in the distribution of site-variation and nucleotide composition. Supermatrix inferences and coalescence-based approaches were subsequently applied to infer this family's phylogeny. The inferred topologies were the same for both approaches, and support was maximal for each node, entirely resolving the ambiguous relationships of previous analyses. Fast-evolving nuclear exons tended to yield more reliable phylogenies, as slower-evolving sequences were not informative enough to disentangle the short branches of the Echimyidae radiation. Based on this resolved phylogeny and on molecular and morphological evidence, we confirm the rank of the Caribbean hutias - formerly placed in the Capromyidae family - as Capromyinae, a clade nested within Echimyidae. We also name and define Carterodontinae, a new subfamily of Echimyidae, comprising the extant monotypic genus Carterodon from Brazil, which is the closest living relative of West Indies Capromyinae., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
11. In Cold Blood: Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats Mitochondrial Genomes.
- Author
-
Botero-Castro F, Tilak MK, Justy F, Catzeflis F, Delsuc F, and Douzery EJP
- Subjects
- Amino Acid Substitution, Amino Acids genetics, Animals, Biological Evolution, Chiroptera physiology, Evolution, Molecular, Feeding Behavior, Mitochondrial Proteins genetics, Nuclear Proteins genetics, Nucleotides genetics, Phylogeny, Chiroptera genetics, Genome, Mitochondrial
- Abstract
Mitochondrial genomes of animals have long been considered to evolve under the action of purifying selection. Nevertheless, there is increasing evidence that they can also undergo episodes of positive selection in response to shifts in physiological or environmental demands. Vampire bats experienced such a shift, as they are the only mammals feeding exclusively on blood and possessing anatomical adaptations to deal with the associated physiological requirements (e.g., ingestion of high amounts of liquid water and iron). We sequenced eight new chiropteran mitogenomes including two species of vampire bats, five representatives of other lineages of phyllostomids and one close outgroup. Conducting detailed comparative mitogenomic analyses, we found evidence for accelerated evolutionary rates at the nucleotide and amino acid levels in vampires. Moreover, the mitogenomes of vampire bats are characterized by an increased cytosine (C) content mirrored by a decrease in thymine (T) compared with other chiropterans. Proteins encoded by the vampire bat mitogenomes also exhibit a significant increase in threonine (Thr) and slight reductions in frequency of the hydrophobic residues isoleucine (Ile), valine (Val), methionine (Met), and phenylalanine (Phe). We show that these peculiar substitution patterns can be explained by the co-occurrence of both neutral (mutational bias) and adaptive (positive selection) processes. We propose that vampire bat mitogenomes may have been impacted by selection on mitochondrial proteins to accommodate the metabolism and nutritional qualities of blood meals.
- Published
- 2018
- Full Text
- View/download PDF
12. A phylogenomic framework and timescale for comparative studies of tunicates.
- Author
-
Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak MK, Turon X, López-Legentil S, Piette J, Lemaire P, and Douzery EJP
- Subjects
- Animals, RNA, Ribosomal, 18S genetics, Urochordata classification, Evolution, Molecular, Genomics methods, Phylogeny, Transcriptome genetics, Urochordata genetics
- Abstract
Background: Tunicates are the closest relatives of vertebrates and are widely used as models to study the evolutionary developmental biology of chordates. Their phylogeny, however, remains poorly understood, and to date, only the 18S rRNA nuclear gene and mitogenomes have been used to delineate the major groups of tunicates. To resolve their evolutionary relationships and provide a first estimate of their divergence times, we used a transcriptomic approach to build a phylogenomic dataset including all major tunicate lineages, consisting of 258 evolutionarily conserved orthologous genes from representative species., Results: Phylogenetic analyses using site-heterogeneous CAT mixture models of amino acid sequence evolution resulted in a strongly supported tree topology resolving the relationships among four major tunicate clades: (1) Appendicularia, (2) Thaliacea + Phlebobranchia + Aplousobranchia, (3) Molgulidae, and (4) Styelidae + Pyuridae. Notably, the morphologically derived Thaliacea are confirmed as the sister group of the clade uniting Phlebobranchia + Aplousobranchia within which the precise position of the model ascidian genus Ciona remains uncertain. Relaxed molecular clock analyses accommodating the accelerated evolutionary rate of tunicates reveal ancient diversification (~ 450-350 million years ago) among the major groups and allow one to compare their evolutionary age with respect to the major vertebrate model lineages., Conclusions: Our study represents the most comprehensive phylogenomic dataset for the main tunicate lineages. It offers a reference phylogenetic framework and first tentative timescale for tunicates, allowing a direct comparison with vertebrate model species in comparative genomics and evolutionary developmental biology studies.
- Published
- 2018
- Full Text
- View/download PDF
13. Illumina Library Preparation for Sequencing the GC-Rich Fraction of Heterogeneous Genomic DNA.
- Author
-
Tilak MK, Botero-Castro F, Galtier N, and Nabholz B
- Subjects
- Animals, Chickens genetics, DNA chemistry, DNA isolation & purification, Genomics economics, Genomics methods, High-Throughput Nucleotide Sequencing economics, High-Throughput Nucleotide Sequencing methods, Hot Temperature, Polymerase Chain Reaction economics, Polymerase Chain Reaction methods, Sequence Analysis, DNA economics, Sequence Analysis, DNA methods, DNA genetics, GC Rich Sequence, Gene Library
- Abstract
Standard Illumina libraries are biased toward sequences of intermediate GC-content. This results in an underrepresentation of GC-rich regions in sequencing projects of genomes with heterogeneous base composition, such as mammals and birds. We developed a simple, cost-effective protocol to enrich sheared genomic DNA in its GC-rich fraction by subtracting AT-rich DNA. This was achieved by heating DNA up to 90 °C before applying Illumina library preparation. We tested the new approach on chicken DNA and found that heated DNA increased average coverage in the GC-richest chromosomes by a factor up to six. Using a Taq polymerase supposedly appropriate for PCR amplification of GC-rich sequences had a much weaker effect. Our protocol should greatly facilitate sequencing and resequencing of the GC-richest regions of heterogeneous genomes, in combination with standard short-read and long-read technologies., (© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2018
- Full Text
- View/download PDF
14. Avian Genomes Revisited: Hidden Genes Uncovered and the Rates versus Traits Paradox in Birds.
- Author
-
Botero-Castro F, Figuet E, Tilak MK, Nabholz B, and Galtier N
- Subjects
- Animals, Base Composition, Biological Evolution, Chickens genetics, Databases, Genetic, Evolution, Molecular, Gene Conversion, Genomics, Genotype, Mammals genetics, Phenotype, Phylogeny, Selection, Genetic genetics, Birds genetics, GC Rich Sequence genetics, Genome genetics
- Abstract
According to current assemblies, avian genomes differ from those of the other lineages of amniotes in 1) containing a lower number of genes; 2) displaying a high stability of karyotype and recombination map; and 3) lacking any correlation between evolutionary rates (dN/dS) and life-history traits, unlike mammals and nonavian reptiles. We question the reality of the bird missing genes and investigate whether insufficient representation of bird gene content might have biased previous evolutionary analyses. Mining RNAseq data, we show that the vast majority of the genes missing from avian genome assemblies are actually present in most species of birds. These mainly correspond to the GC-rich fraction of the bird genome, which is the most difficult to sequence, assemble and annotate. With the inclusion of these genes in a phylogenomic analysis of high-quality alignments, we uncover a positive and significant correlation between the ratio of nonsynonymous to synonymous substitution rate (dN/dS) and life-history traits in Neoaves. We report a strong effect of GC-biased gene conversion on the dN/dS ratio in birds and a peculiar behavior of Palaeognathae (ostrich and allies) and Galloanserae (chickens, ducks and allies). Avian genomes do not contain fewer genes than mammals or nonavian reptiles. Previous analyses have overlooked ∼15% of the bird gene complement. GC-rich regions, which are the most difficult to access, are a key component of amniote genomes. They experience peculiar molecular processes and must be included for unbiased functional and comparative genomic analyses in birds., (© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
15. Mitogenomic Phylogeny, Diversification, and Biogeography of South American Spiny Rats.
- Author
-
Fabre PH, Upham NS, Emmons LH, Justy F, Leite YL, Carolina Loss A, Orlando L, Tilak MK, Patterson BD, and Douzery EJ
- Subjects
- Animals, Base Sequence, Bayes Theorem, Biological Evolution, DNA, Mitochondrial genetics, Evolution, Molecular, Genetic Variation, Phylogeny, Phylogeography methods, Rats, Sequence Analysis, DNA methods, South America, Genome, Mitochondrial, Mitochondria genetics, Rodentia genetics
- Abstract
Echimyidae is one of the most speciose and ecologically diverse rodent families in the world, occupying a wide range of habitats in the Neotropics. However, a resolved phylogeny at the genus-level is still lacking for these 22 genera of South American spiny rats, including the coypu (Myocastorinae), and 5 genera of West Indian hutias (Capromyidae) relatives. Here, we used Illumina shotgun sequencing to assemble 38 new complete mitogenomes, establishing Echimyidae, and Capromyidae as the first major rodent families to be completely sequenced at the genus-level for their mitochondrial DNA. Combining mitogenomes and nuclear exons, we inferred a robust phylogenetic framework that reveals several newly supported nodes as well as the tempo of the higher level diversification of these rodents. Incorporating the full generic diversity of extant echimyids leads us to propose a new higher level classification of two subfamilies: Euryzygomatomyinae and Echimyinae. Of note, the enigmatic Carterodon displays fast-evolving mitochondrial and nuclear sequences, with a long branch that destabilizes the deepest divergences of the echimyid tree, thereby challenging the sister-group relationship between Capromyidae and Euryzygomatomyinae. Biogeographical analyses involving higher level taxa show that several vicariant and dispersal events impacted the evolutionary history of echimyids. The diversification history of Echimyidae seems to have been influenced by two major historical factors, namely (1) recurrent connections between Atlantic and Amazonian Forests and (2) the Northern uplift of the Andes., (© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
16. Naked but not Hairless: the pitfalls of analyses of molecular adaptation based on few genome sequence comparisons.
- Author
-
Delsuc F and Tilak MK
- Subjects
- Animals, Exons, Genomics, Hair growth & development, Mammals genetics, Mole Rats growth & development, Phenotype, Phylogeny, Sequence Alignment, Amino Acid Substitution, Evolution, Molecular, Mole Rats genetics
- Abstract
The naked mole-rat (Heterocephalus glaber) is the only rodent species that naturally lacks fur. Genome sequencing of this atypical rodent species recently shed light on a number of its morphological and physiological adaptations. More specifically, its hairless phenotype has been traced back to a single amino acid change (C397W) in the hair growth associated (HR) protein (or Hairless). By considering the available species diversity, we show that this specific position is in fact variable across mammals, including in the horse that was misleadingly reported to have the ancestral Cysteine. Moreover, by sequencing the corresponding HR exon in additional rodent species, we demonstrate that the C397W substitution is actually not a peculiarity of the naked mole-rat. Instead, this specific amino acid substitution is present in all hystricognath rodents investigated, which are all fully furred, including the naked mole-rat closest relative, the Damaraland mole-rat (Fukomys damarensis). Overall, we found no statistical correlation between amino acid changes at position 397 of the HR protein and reduced pilosity across the mammalian phylogeny. This demonstrates that this single amino acid change does not explain the naked mole-rat hairless phenotype. Our case study calls for caution before making strong claims regarding the molecular basis of phenotypic adaptation based on the screening of specific amino acid substitutions using only few model species in genome sequence comparisons. It also exposes the more general problem of the dilution of essential information in the supplementary material of genome papers thereby increasing the probability that misleading results will escape the scrutiny of editors, reviewers, and ultimately readers., (© The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2015
- Full Text
- View/download PDF
17. Ascidian mitogenomics: comparison of evolutionary rates in closely related taxa provides evidence of ongoing speciation events.
- Author
-
Griggio F, Voskoboynik A, Iannelli F, Justy F, Tilak MK, Turon X, Pesole G, Douzery EJ, Mastrototaro F, and Gissi C
- Subjects
- Animals, DNA, Mitochondrial genetics, Gene Order, Molecular Sequence Annotation, Molecular Sequence Data, Nucleic Acid Conformation, Open Reading Frames genetics, Phylogeny, Sequence Analysis, DNA, Species Specificity, Ciona intestinalis classification, Ciona intestinalis genetics, Evolution, Molecular, Genome, Mitochondrial
- Abstract
Ascidians are a fascinating group of filter-feeding marine chordates characterized by rapid evolution of both sequences and structure of their nuclear and mitochondrial genomes. Moreover, they include several model organisms used to investigate complex biological processes in chordates. To study the evolutionary dynamics of ascidians at short phylogenetic distances, we sequenced 13 new mitogenomes and analyzed them, together with 15 other available mitogenomes, using a novel approach involving detailed whole-mitogenome comparisons of conspecific and congeneric pairs. The evolutionary rate was quite homogeneous at both intraspecific and congeneric level, and the lowest congeneric rates were found in cryptic (morphologically undistinguishable) and in morphologically very similar species pairs. Moreover, congeneric nonsynonymous rates (dN) were up to two orders of magnitude higher than in intraspecies pairs. Overall, a clear-cut gap sets apart conspecific from congeneric pairs. These evolutionary peculiarities allowed easily identifying an extraordinary intraspecific variability in the model ascidian Botryllus schlosseri, where most pairs show a dN value between that observed at intraspecies and congeneric level, yet consistently lower than that of the Ciona intestinalis cryptic species pair. These data suggest ongoing speciation events producing genetically distinct B. schlosseri entities. Remarkably, these ongoing speciation events were undetectable by the cox1 barcode fragment, demonstrating that, at low phylogenetic distances, the whole mitogenome has a higher resolving power than cox1. Our study shows that whole-mitogenome comparative analyses, performed on a suitable sample of congeneric and intraspecies pairs, may allow detecting not only cryptic species but also ongoing speciation events.
- Published
- 2014
- Full Text
- View/download PDF
18. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae).
- Author
-
Botero-Castro F, Tilak MK, Justy F, Catzeflis F, Delsuc F, and Douzery EJ
- Subjects
- Animals, Bayes Theorem, Cell Nucleus genetics, Chiroptera genetics, Evolution, Molecular, Genetic Markers, Likelihood Functions, Sequence Analysis, DNA methods, Chiroptera classification, Genome, Mitochondrial, Phylogeny
- Abstract
Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of phyllostomid bats based on a denser species sampling., (Copyright © 2013. Published by Elsevier Inc.)
- Published
- 2013
- Full Text
- View/download PDF
19. Molecular phylogenetics unveils the ancient evolutionary origins of the enigmatic fairy armadillos.
- Author
-
Delsuc F, Superina M, Tilak MK, Douzery EJ, and Hassanin A
- Subjects
- Animals, Armadillos classification, Bayes Theorem, Electron Transport Complex I genetics, Exons, Genes, BRCA1, Phylogeography, Ribonucleotide Reductases genetics, Sequence Analysis, DNA, South America, von Willebrand Factor genetics, Armadillos genetics, Biological Evolution, Genes, Mitochondrial, Genetic Speciation, Phylogeny
- Abstract
Fairy armadillos or pichiciegos (Xenarthra, Dasypodidae) are among the most elusive mammals. Due to their subterranean and nocturnal lifestyle, their basic biology and evolutionary history remain virtually unknown. Two distinct species with allopatric distributions are recognized: Chlamyphorus truncatus is restricted to central Argentina, while Calyptophractus retusus occurs in the Gran Chaco of Argentina, Paraguay, and Bolivia. To test their monophyly and resolve their phylogenetic affinities within armadillos, we obtained sequence data from modern and museum specimens for two mitochondrial genes (12S RNA [MT-RNR1] and NADH dehydrogenase 1 [MT-ND1]) and two nuclear exons (breast cancer 1 early onset exon 11 [BRCA1] and von Willebrand factor exon 28 [VWF]). Phylogenetic analyses provided a reference phylogeny and timescale for living xenarthran genera. Our results reveal monophyletic pichiciegos as members of a major armadillo subfamily (Chlamyphorinae). Their strictly fossorial lifestyle probably evolved as a response to the Oligocene aridification that occurred in South America after their divergence from Tolypeutinae around 32 million years ago (Mya). The ancient divergence date (∼17Mya) for separation between the two species supports their taxonomic classification into distinct genera. The synchronicity with Middle Miocene marine incursions along the Paraná river basin suggests a vicariant origin for pichiciegos by the disruption of their ancestral range. Their phylogenetic distinctiveness and rarity in the wild argue in favor of high conservation priority., (Copyright © 2011 Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
20. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models.
- Author
-
Tsagkogeorga G, Turon X, Hopcroft RR, Tilak MK, Feldstein T, Shenkar N, Loya Y, Huchon D, Douzery EJ, and Delsuc F
- Subjects
- Animals, Base Sequence, Bayes Theorem, Genes, rRNA, Models, Genetic, Molecular Sequence Data, Nucleic Acid Conformation, Sequence Analysis, RNA, Urochordata classification, Evolution, Molecular, Phylogeny, RNA, Ribosomal, 18S genetics, Urochordata genetics
- Abstract
Background: Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea., Results: Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1) Phlebobranchia + Thaliacea + Aplousobranchia, 2) Appendicularia, and 3) Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models suggest a sister-group relationship between Salpida and Pyrosomatida within Thaliacea., Conclusion: An updated phylogenetic framework for tunicates is provided based on phylogenetic analyses using the most realistic evolutionary models currently available for ribosomal molecules and an unprecedented taxonomic sampling. Detailed analyses of the 18S rRNA gene allowed a clear definition of the major tunicate groups and revealed contrasting evolutionary dynamics among major lineages. The resolving power of this gene nevertheless appears limited within the clades composed of Phlebobranchia + Thaliacea + Aplousobranchia and Pyuridae + Styelidae, which were delineated as spots of low resolution. These limitations underline the need to develop new nuclear markers in order to further resolve the phylogeny of this keystone group in chordate evolution.
- Published
- 2009
- Full Text
- View/download PDF
21. Is leprosy spreading among nine-banded armadillos in the southeastern United States?
- Author
-
Loughry WJ, Truman RW, McDonough CM, Tilak MK, Garnier S, and Delsuc F
- Subjects
- Alabama epidemiology, Animals, DNA, Bacterial chemistry, DNA, Bacterial genetics, Female, Florida epidemiology, Gene Amplification, Genetic Markers, Georgia epidemiology, Leprosy epidemiology, Leprosy prevention & control, Leprosy transmission, Male, Microsatellite Repeats, Mississippi epidemiology, Seroepidemiologic Studies, Southeastern United States epidemiology, Antibodies, Bacterial blood, Armadillos microbiology, Leprosy veterinary, Mycobacterium leprae genetics, Mycobacterium leprae immunology, Mycobacterium leprae isolation & purification
- Abstract
In the United States, nine-banded armadillo (Dasypus novemcinctus) populations are derived from two sources: (1) a continuous range expansion from Mexico led to western populations, some of which, particularly along the western Gulf Coast and west side of the Mississippi River delta, exhibit persistently high rates of leprosy infection, and (2) a small group of animals released from captivity in Florida gave rise to eastern populations that were all considered leprosy free. Given that western and eastern populations have now merged, an important question becomes, to what extent is leprosy spreading into formerly uninfected populations? To answer this question, we sampled 500 animals from populations in Mississippi, Alabama, and Georgia. Analyses of nuclear microsatellite DNA markers confirmed the historic link between source populations from Texas and Florida, but did not permit resolution of the extent to which these intermediate populations represented eastern versus western gene pools. Prevalence of leprosy was determined by screening blood samples for the presence of antibodies against Mycobacterium leprae and via polymerase chain reaction amplification of armadillo tissues to detect M. leprae DNA. The proportion of infected individuals within each population varied from 0% to 10%. Although rare, a number of positive individuals were identified in eastern sites previously considered uninfected. This indicates leprosy may be spreading eastward and calls into question hypotheses proposing leprosy infection is confined because of ecologic constraints to areas west of the Mississippi River.
- Published
- 2009
- Full Text
- View/download PDF
22. OrthoMaM: a database of orthologous genomic markers for placental mammal phylogenetics.
- Author
-
Ranwez V, Delsuc F, Ranwez S, Belkhir K, Tilak MK, and Douzery EJ
- Subjects
- Animals, Mammals classification, Databases, Genetic, Genetic Markers genetics, Genome, Mammals genetics, Phylogeny
- Abstract
Background: Molecular sequence data have become the standard in modern day phylogenetics. In particular, several long-standing questions of mammalian evolutionary history have been recently resolved thanks to the use of molecular characters. Yet, most studies have focused on only a handful of standard markers. The availability of an ever increasing number of whole genome sequences is a golden mine for modern systematics. Genomic data now provide the opportunity to select new markers that are potentially relevant for further resolving branches of the mammalian phylogenetic tree at various taxonomic levels., Description: The EnsEMBL database was used to determine a set of orthologous genes from 12 available complete mammalian genomes. As targets for possible amplification and sequencing in additional taxa, more than 3,000 exons of length > 400 bp have been selected, among which 118, 368, 608, and 674 are respectively retrieved for 12, 11, 10, and 9 species. A bioinformatic pipeline has been developed to provide evolutionary descriptors for these candidate markers in order to assess their potential phylogenetic utility. The resulting OrthoMaM (Orthologous Mammalian Markers) database can be queried and alignments can be downloaded through a dedicated web interface http://kimura.univ-montp2.fr/orthomam., Conclusion: The importance of marker choice in phylogenetic studies has long been stressed. Our database centered on complete genome information now makes possible to select promising markers to a given phylogenetic question or a systematic framework by querying a number of evolutionary descriptors. The usefulness of the database is illustrated with two biological examples. First, two potentially useful markers were identified for rodent systematics based on relevant evolutionary parameters and sequenced in additional species. Second, a complete, gapless 94 kb supermatrix of 118 orthologous exons was assembled for 12 mammals. Phylogenetic analyses using probabilistic methods unambiguously supported the new placental phylogeny by retrieving the monophyly of Glires, Euarchontoglires, Laurasiatheria, and Boreoeutheria. Muroid rodents thus do not represent a basal placental lineage as it was mistakenly reasserted in some recent phylogenomic analyses based on fewer taxa. We expect the OrthoMaM database to be useful for further resolving the phylogenetic tree of placental mammals and for better understanding the evolutionary dynamics of their genomes, i.e., the forces that shaped coding sequences in terms of selective constraints.
- Published
- 2007
- Full Text
- View/download PDF
23. The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies.
- Author
-
Galewski T, Tilak MK, Sanchez S, Chevret P, Paradis E, and Douzery EJ
- Subjects
- Animals, Arvicolinae classification, Cell Nucleus genetics, DNA, Mitochondrial genetics, Evolution, Molecular, Exons, Genes, Mitochondrial, Point Mutation, Arvicolinae genetics, Cytochromes b genetics, Phylogeny, Receptors, Somatotropin genetics
- Abstract
Background: Mitochondrial and nuclear genes have generally been employed for different purposes in molecular systematics, the former to resolve relationships within recently evolved groups and the latter to investigate phylogenies at a deeper level. In the case of rapid and recent evolutionary radiations, mitochondrial genes like cytochrome b (CYB) are often inefficient for resolving phylogenetic relationships. One of the best examples is illustrated by Arvicolinae rodents (Rodentia; Muridae), the most impressive mammalian radiation of the Northern Hemisphere which produced voles, lemmings and muskrats. Here, we compare the relative contribution of a nuclear marker--the exon 10 of the growth hormone receptor (GHR) gene--to the one of the mitochondrial CYB for inferring phylogenetic relationships among the major lineages of arvicoline rodents., Results: The analysis of GHR sequences improves the overall resolution of the Arvicolinae phylogeny. Our results show that the Caucasian long-clawed vole (Prometheomys schaposnikowi) is one of the basalmost arvicolines, and confirm that true lemmings (Lemmus) and collared lemmings (Dicrostonyx) are not closely related as suggested by morphology. Red-backed voles (Myodini) are found as the sister-group of a clade encompassing water vole (Arvicola), snow vole (Chionomys), and meadow voles (Microtus and allies). Within the latter, no support is recovered for the generic recognition of Blanfordimys, Lasiopodomys, Neodon, and Phaiomys as suggested by morphology. Comparisons of parameter estimates for branch lengths, base composition, among sites rate heterogeneity, and GTR relative substitution rates indicate that CYB sequences consistently exhibit more heterogeneity among codon positions than GHR. By analyzing the contribution of each codon position to node resolution, we show that the apparent higher efficiency of GHR is due to their third positions. Although we focus on speciation events spanning the last 10 million years (Myr), CYB sequences display highly saturated codon positions contrary to the nuclear exon. Lastly, variable length bootstrap predicts a significant increase in resolution of arvicoline phylogeny through the sequencing of nuclear data in an order of magnitude three to five times greater than the size of GHR exon 10., Conclusion: Our survey provides a first resolved gene tree for Arvicolinae. The comparison of CYB and GHR phylogenetic efficiency supports recent assertions that nuclear genes are useful for resolving relationships of recently evolved animals. The superiority of nuclear exons may reside both in (i) less heterogeneity among sites, and (ii) the presence of highly informative sites in third codon positions, that evolve rapidly enough to accumulate synapomorphies, but slow enough to avoid substitutional saturation.
- Published
- 2006
- Full Text
- View/download PDF
24. New DNA data from a transthyretin nuclear intron suggest an Oligocene to Miocene diversification of living South America opossums (Marsupialia: Didelphidae).
- Author
-
Steiner C, Tilak MK, Douzery EJ, and Catzeflis FM
- Subjects
- Animals, Base Sequence, Cytochromes b genetics, DNA genetics, DNA Primers, DNA, Mitochondrial genetics, DNA, Ribosomal genetics, Fossils, Introns, Molecular Sequence Data, South America, Opossums classification, Opossums genetics, Phylogeny, Prealbumin genetics, RNA, Ribosomal genetics
- Abstract
Phylogenetic relationships of 19 species of didelphid marsupials were studied using two nuclear markers, the non-coding transthyretin intron 1 (TTR) and the coding interphotoreceptor retinoid binding protein exon 1 (IRBP), and two mitochondrial genes, the protein-coding cytochrome b (cyt-b) and the structural 12S ribosomal DNA (12S rDNA). Evolutionary dynamics of these four markers were compared to each other, revealing the appropriate properties presented by TTR intron 1 together with its well supported and resolved phylogenetic signal. Nuclear markers supported the monophyly of medium and large-sized opossums Metachirus+(Chironectes, Lutreolina, Didelphis, Philander), and the paraphyly of mouse-sized opossums, with the genera Gracilinanus, Thylamys, and Marmosops as a sister group to medium and large-sized didelphids. Conflicting branching patterns between mitochondrial and nuclear data involved the phylogenetic position of Marmosa-Micoureus-Monodelphis relative to other mouse-sized opossums. Nuclear phylogenetic inferences among genera were confirmed by the presence of synapomorphic indels observed in TTR intron 1. A Bayesian relaxed molecular clock dating of didelphid evolution using nuclear markers estimated their origin in the Middle Eocene (39.8 million years ago), with subsequent diversification during the Oligocene (Deseadan) and Miocene.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.