1. Modeling for Apple-Slice Drying in Carbon Dioxide Gas
- Author
-
Tien Cong Do, Quoc Tuan Le, and Thi Thu Hang Tran
- Subjects
modeling ,apple slice ,modified air drying ,continuum model ,Agriculture (General) ,S1-972 - Abstract
In this study, a numerical model of a modified air-drying process of apple slices that considers the conjugate heat and mass transfer in the drying chamber is developed. Inside the apple slice sample, the continuum model is incorporated to describe the non-isothermal two-phase transport. The intra- and extra-sample heat, mass, and momentum transfer are coupled to simulate the transportation phenomena inside the drying chamber using the finite volume method implemented in computational fluid dynamic software (COMSOL Multiphysics 6.0). In this manner, temperature, velocity, moisture content of the drying agent inside the chamber, sample temperature, and moisture content distributions can be predicted. The validity of the proposed model is confirmed by a good agreement between the numerical and experimental data in terms of the overall evaporation rate and temperature. The simulation results indicate that the maldistribution of the convective heat and mass transfer resistance on the sample surface is significant. This can be explained by the nonuniform velocity distribution inside the drying chamber. Additionally, both experimental and numerical observations show that the drying process can be divided into two periods: the quasi-constant drying rate and falling drying rate periods. The impact of dryer operational conditions on the drying process is numerically investigated.
- Published
- 2024
- Full Text
- View/download PDF