Daniel Beysens, Xiaoyi Liu, Tianhong Cui, Tarik Bourouina, Frédéric Marty, Laurent Royon, Joachim Trosseille, Justine Laurent, Anne Mongruel, Philippe Basset, Electronique, Systèmes de communication et Microsystèmes (ESYCOM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire Interdisciplinaire des Energies de Demain (LIED (UMR_8236)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), ESIEE Paris, Université Gustave Eiffel, Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Liquides et interfaces (L&I), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Laboratoire de Rhéologie et de Mise en Oeuvre des Polymères (LRMOP), Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Minnesota System, Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Observatoire des polluants urbains [Paris] (OPUR), ANR-16-IDEX-0003,FUTURE,FUTURE(2016), and ANR-20-CE08-0023,META-WATER,Meta-surface radiative pour la collecte d'eau atmospherique(2020)
Summary Dew water, mostly ignored until now, can provide clean freshwater resources, just by extracting the atmospheric vapor available in surrounding air. Inspired by silicon-based solar panels, the vapor can be harvested by a concept of water condensing panels. Efficient water harvesting requires not only a considerable yield but also a timely water removal from the surface since the very beginning of condensation to avoid the huge evaporation losses. This translates into strict surface properties, which are difficult to simultaneously realize. Herein, we study various functionalized silicon surfaces, including the so-called Black Silicon, which supports two droplet motion modes—out-of-plane jumping and in-plane sweeping, due to its unique surface morphology, synergistically leading to a pioneering combination of above two required characteristics. According to silicon material's scalability, the proposed silicon-based water panels would benefit from existing infrastructures toward dual functions of energy harvesting in daytime and water harvesting in nighttime., Graphical abstract, Highlights • Unusual condensation dynamics occur on the hierarchical Black Silicon metasurface • Near-zero water removal time and good water yield are simultaneously achieved • Great scalability and multifunctionality are accessible to the proposed water panel, Materials design; Materials property; Metamaterials; Surface