Thomas Stanislas, Laetitia Fouillen, Alenka Čopič, Mathilde Laetitia Audrey Simon, Patrick Moreau, Lise C. Noack, Matthieu Pierre Platre, Vincent Bayle, Lilly Maneta-Peyret, Laia Armengot, Marie-Cécile Caillaud, Mehdi Doumane, Yvon Jaillais, Martin Potocký, Přemysl Pejchar, Reproduction et développement des plantes (RDP), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Czech Academy of Sciences [Prague] (ASCR), Institute of Experimental Botany, Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Czech Academy of Sciences [Prague] (CAS), Institute of Experimental Botany of the Czech Academy of Sciences (IEB / CAS), ERC under FP 3363360-APPL, French Ministry of Higher Education, Czech Science Foundation 17-27477S, ANR-16-CE13-0021,INTERPLAY,Role des phosphoinositides pendant la cytokinèse chez les plantes(2016), and European Project: 615739,EC:FP7:ERC,ERC-2013-CoG,MECHANODEVO(2014)
Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In all eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking and polarity. Here, we explore which are the lipids that control membrane electrostatics using plants as a model. We show that phosphatidic acidic (PA), phosphatidylserine (PS) and phosphatidylinositol-4-phosphate (PI4P) are separately required to generate the electrostatic signature of the plant PM. In addition, we reveal the existence of an electrostatic territory that is organized as a gradient along the endocytic pathway and is controlled by PS/PI4P combination. Altogether, we propose that combinatorial lipid composition of the cytosolic leaflet of cellular organelles not only defines the plant electrostatic territory but also distinguishes different compartments within this territory by specifying their varying surface charges.