210 results on '"Thiessard, Frantz"'
Search Results
2. Automatic detection of surgical site infections from a clinical data warehouse
- Author
-
Quéroué, Marine, Lashéras-Bauduin, Agnès, Jouhet, Vianney, Thiessard, Frantz, Vital, Jean-Marc, Rogues, Anne-Marie, and Cossin, Sébastien
- Subjects
Computer Science - Computation and Language ,Statistics - Machine Learning - Abstract
Reducing the incidence of surgical site infections (SSIs) is one of the objectives of the French nosocomial infection control program. Manual monitoring of SSIs is carried out each year by the hospital hygiene team and surgeons at the University Hospital of Bordeaux. Our goal was to develop an automatic detection algorithm based on hospital information system data. Three years (2015, 2016 and 2017) of manual spine surgery monitoring have been used as a gold standard to extract features and train machine learning algorithms. The dataset contained 22 SSIs out of 2133 spine surgeries. Two different approaches were compared. The first used several data sources and achieved the best performance but is difficult to generalize to other institutions. The second was based on free text only with semiautomatic extraction of discriminant terms. The algorithms managed to identify all the SSIs with 20 and 26 false positives respectively on the dataset. Another evaluation is underway. These results are encouraging for the development of semi-automated surveillance methods., Comment: in French
- Published
- 2019
3. Pre-training A Neural Language Model Improves The Sample Efficiency of an Emergency Room Classification Model
- Author
-
Xu, Binbin, Gil-Jardiné, Cédric, Thiessard, Frantz, Tellier, Eric, Avalos, Marta, and Lagarde, Emmanuel
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
To build a French national electronic injury surveillance system based on emergency room visits, we aim to develop a coding system to classify their causes from clinical notes in free-text. Supervised learning techniques have shown good results in this area but require a large amount of expert annotated dataset which is time consuming and costly to obtain. We hypothesize that the Natural Language Processing Transformer model incorporating a generative self-supervised pre-training step can significantly reduce the required number of annotated samples for supervised fine-tuning. In this preliminary study, we test our hypothesis in the simplified problem of predicting whether a visit is the consequence of a traumatic event or not from free-text clinical notes. Using fully re-trained GPT-2 models (without OpenAI pre-trained weights), we assess the gain of applying a self-supervised pre-training phase with unlabeled notes prior to the supervised learning task. Results show that the number of data required to achieve a ginve level of performance (AUC>0.95) was reduced by a factor of 10 when applying pre-training. Namely, for 16 times more data, the fully-supervised model achieved an improvement <1% in AUC. To conclude, it is possible to adapt a multi-purpose neural language model such as the GPT-2 to create a powerful tool for classification of free-text notes with only a small number of labeled samples., Comment: Version of the published manuscript
- Published
- 2019
4. Detection and Analysis of Drug Non-compliance in Internet Fora Using Information Retrieval Approaches
- Author
-
Bigeard, Sam, primary, Thiessard, Frantz, additional, and Grabar, Natalia, additional
- Published
- 2023
- Full Text
- View/download PDF
5. IAM at CLEF eHealth 2018: Concept Annotation and Coding in French Death Certificates
- Author
-
Cossin, Sébastien, Jouhet, Vianney, Mougin, Fleur, Diallo, Gayo, and Thiessard, Frantz
- Subjects
Computer Science - Computation and Language - Abstract
In this paper, we describe the approach and results for our participation in the task 1 (multilingual information extraction) of the CLEF eHealth 2018 challenge. We addressed the task of automatically assigning ICD-10 codes to French death certificates. We used a dictionary-based approach using materials provided by the task organizers. The terms of the ICD-10 terminology were normalized, tokenized and stored in a tree data structure. The Levenshtein distance was used to detect typos. Frequent abbreviations were detected by manually creating a small set of them. Our system achieved an F-score of 0.786 (precision: 0.794, recall: 0.779). These scores were substantially higher than the average score of the systems that participated in the challenge.
- Published
- 2018
6. Evaluating the Relevance of Virtual Drugs
- Author
-
Awuklu, Yvon K., primary, Jouhet, Vianney, additional, Cossin, Sébastien, additional, Thiessard, Frantz, additional, Griffier, Romain, additional, and Mougin, Fleur, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Visualizing Food-Drug Interactions in the Thériaque Database
- Author
-
Lalanne, Frédéric, primary, Bedouch, Pierrick, additional, Simonnet, Cyril, additional, Depras, Vincent, additional, Bordea, Georgeta, additional, Bourqui, Romain, additional, Hamon, Thierry, additional, Thiessard, Frantz, additional, and Mougin, Fleur, additional
- Published
- 2021
- Full Text
- View/download PDF
8. Automatic Query Selection for Acquisition and Discovery of Food-Drug Interactions
- Author
-
Bordea, Georgeta, Thiessard, Frantz, Hamon, Thierry, Mougin, Fleur, Hutchison, David, Series Editor, Kanade, Takeo, Series Editor, Kittler, Josef, Series Editor, Kleinberg, Jon M., Series Editor, Mattern, Friedemann, Series Editor, Mitchell, John C., Series Editor, Naor, Moni, Series Editor, Pandu Rangan, C., Series Editor, Steffen, Bernhard, Series Editor, Terzopoulos, Demetri, Series Editor, Tygar, Doug, Series Editor, Weikum, Gerhard, Series Editor, Bellot, Patrice, editor, Trabelsi, Chiraz, editor, Mothe, Josiane, editor, Murtagh, Fionn, editor, Nie, Jian Yun, editor, Soulier, Laure, editor, SanJuan, Eric, editor, Cappellato, Linda, editor, and Ferro, Nicola, editor
- Published
- 2018
- Full Text
- View/download PDF
9. Definition of indicators of the appropriateness of oral anticoagulant prescriptions in hospitalized adults: Literature review and consensus (PACHA study)
- Author
-
Petit-Monéger, Aurélie, Thiessard, Frantz, Noize, Pernelle, Berdaï, Driss, Jouhet, Vianney, Saillour-Glénisson, Florence, and Salmi, Louis-Rachid
- Published
- 2018
- Full Text
- View/download PDF
10. Demandes d’études post-inscription (EPI), suivi des patients en vie réelle : évolution de la place des bases de données
- Author
-
Berdaï, Driss, Thomas-Delecourt, Florence, Szwarcensztein, Karine, d’Andon, Anne, Collignon, Cécile, Comet, Denis, Déal, Cécile, Dervaux, Benoît, Gaudin, Anne-Françoise, Lamarque-Garnier, Véronique, Lechat, Philippe, Marque, Sébastien, Maugendre, Philippe, Méchin, Hubert, Moore, Nicholas, Nachbaur, Gaëlle, Robain, Mathieu, Roussel, Christophe, Tanti, André, and Thiessard, Frantz
- Published
- 2018
- Full Text
- View/download PDF
11. Requests for post-registration studies (PRS), patients follow-up in actual practice: Changes in the role of databases
- Author
-
Berdaï, Driss, Thomas-Delecourt, Florence, Szwarcensztein, Karine, d’Andon, Anne, Collignon, Cécile, Comet, Denis, Déal, Cécile, Dervaux, Benoît, Gaudin, Anne-Françoise, Lamarque-Garnier, Véronique, Lechat, Philippe, Marque, Sébastien, Maugendre, Philippe, Méchin, Hubert, Moore, Nicholas, Nachbaur, Gaëlle, Robain, Mathieu, Roussel, Christophe, Tanti, André, and Thiessard, Frantz
- Published
- 2018
- Full Text
- View/download PDF
12. Advantages and limitations of online communities of patients for research on health products
- Author
-
Audry, Antoine, Bilbault, Pascal, Chekroun, Michael, Demerville, Lauren, Escudier, Thierry, Guéroult-Accolas, Laure, Guillot, Caroline, Malbezin, Muriel, Maugendre, Philippe, Micallef, Joëlle, Molimard, Mathieu, Montastruc, François, Pierron, Evelyne, Reichardt, Lionel, Thiessard, Frantz, Ravoire, Sophie, Lang, Marie, and Perrin, Elena
- Published
- 2017
- Full Text
- View/download PDF
13. Intérêts et limites des communautés virtuelles de patients pour la recherche sur les produits de santé
- Author
-
Audry, Antoine, Bilbault, Pascal, Chekroun, Michael, Demerville, Lauren, Escudier, Thierry, Guéroult-Accolas, Laure, Guillot, Caroline, Malbezin, Muriel, Maugendre, Philippe, Micallef, Joëlle, Molimard, Mathieu, Montastruc, François, Pierron, Evelyne, Reichardt, Lionel, Thiessard, Frantz, Ravoire, Sophie, Lang, Marie, and Perrin, Elena
- Published
- 2017
- Full Text
- View/download PDF
14. An Automated System Combining Safety Signal Detection and Prioritization from Healthcare Databases: A Pilot Study
- Author
-
Arnaud, Mickael, Bégaud, Bernard, Thiessard, Frantz, Jarrion, Quentin, Bezin, Julien, Pariente, Antoine, and Salvo, Francesco
- Published
- 2018
- Full Text
- View/download PDF
15. Appropriateness of psychotropic drug prescriptions in the elderly: structuring tools based on data extracted from the hospital information system to understand physician practices
- Author
-
Petit-Monéger, Aurélie, Jouhet, Vianney, Thiessard, Frantz, Berdaï, Driss, Noize, Pernelle, Gilleron, Véronique, Caridade, Guillaume, Salmi, Louis-Rachid, and Saillour-Glénisson, Florence
- Published
- 2019
- Full Text
- View/download PDF
16. Validation study in four health-care databases: upper gastrointestinal bleeding misclassification affects precision but not magnitude of drug-related upper gastrointestinal bleeding risk
- Author
-
Valkhoff, Vera E., Coloma, Preciosa M., Masclee, Gwen M.C., Gini, Rosa, Innocenti, Francesco, Lapi, Francesco, Molokhia, Mariam, Mosseveld, Mees, Nielsson, Malene Schou, Schuemie, Martijn, Thiessard, Frantz, van der Lei, Johan, Sturkenboom, Miriam C.J.M., and Trifirò, Gianluca
- Published
- 2014
- Full Text
- View/download PDF
17. Brief Report: Prescription-Drug-Related Risk in Driving: Comparing Conventional and Lasso Shrinkage Logistic Regressions
- Author
-
Avalos, Marta, Adroher, Nuria Duran, Lagarde, Emmanuel, Thiessard, Frantz, Grandvalet, Yves, Contrand, Benjamin, and Orriols, Ludivine
- Published
- 2012
- Full Text
- View/download PDF
18. Traitement automatique des résumés de passages aux urgences : focus sur la désidentification
- Author
-
Bourdois, Loïck, Avalos, Marta, Chenais, Gabrielle, Contrand, Benjamin, Gil-Jardiné, Cédric, Guennec-Jacques, Antoine, Revel, Philippe, Thiessard, Frantz, Touchais, Hélène, Lagarde, Emmanuel, Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bordeaux (UB), Statistics In System biology and Translational Medicine (SISTM), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche en Informatique et en Automatique (Inria), CHU de Bordeaux Pellegrin [Bordeaux], Journée organisée avec le soutien de l’Association française d’Informatique Médicale (AIM) et le Collège Science de l’Ingénierie des Connaissances de l’AFIA dans le cadre de la Plate-Forme Intelligence Artificielle (PFIA), and Avalos, Marta
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,[STAT.ME] Statistics [stat]/Methodology [stat.ME] ,French ,Natural Langage Processing ,Urgences ,Emergency room ,[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] ,[STAT.CO] Statistics [stat]/Computation [stat.CO] ,Pré-entraînement ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,Français ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,[STAT.AP] Statistics [stat]/Applications [stat.AP] ,Pre-training ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,Transformers ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Traitement automatique du langage ,[STAT.CO]Statistics [stat]/Computation [stat.CO] ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] - Abstract
In France, structured data on emergency room visits are aggregated at the national level to build a syndromic surveillance system for different health events. For visits motivated by a traumatic event, information on the circumstances is stored in free text clinical notes. Automating the processing of these notes should allow the enrichment of surveillance tools. In development at Inserm and the Emergency Department of the Bordeaux University Hospital, The TARPON (for Automatic Processing of Emergency Room Notes for a National Observatory, in French) project aims to meet this objective by using the latest deep learning tools applied to automatic language analysis. To exploit these data, an automatic de-identification system, guaranteeing the protection of personal data, is necessary. We present here a comparison study of models allowing the de-identification of clinical texts in French., En France, les données structurées concernant les visites aux urgences sont agrégées au niveau national pour construire un système de surveillance syndromique de différents événements de santé. Pour les visites motivées par un événement traumatique, les informations sur les circonstances sont stockées dans des notes cliniques en texte libre. Automatiser le traitement de ces notes devrait permettre l'enrichissement des outils de surveillance. En développement à l'Inserm et au Service des urgences du CHU de Bordeaux, le projet TARPON (Traitement Automatique des Résumés de Passages aux urgences pour un Observatoire National) vise à répondre à cet objectif par le biais des derniers outils d'apprentissage profond appliqués à l'analyse automatique du langage. Pour exploiter ces données, un système de désidentification automatique, garantissant la protection des données personnelles est nécessaire. Nous présentons ici une étude de comparaison de modèles permettant la désidentification des textes cliniques en français.
- Published
- 2021
19. A Potential Event-Competition Bias in Safety Signal Detection: Results from a Spontaneous Reporting Research Database in France
- Author
-
Salvo, Francesco, Leborgne, Florent, Thiessard, Frantz, Moore, Nicholas, Bégaud, Bernard, and Pariente, Antoine
- Published
- 2013
- Full Text
- View/download PDF
20. Antiretroviral Combination Therapy and HIV Infection
- Author
-
McMenamin, Jim, Allardice, Gwen, Goldberg, David, Parpira, Tamiza, Raab, Gillian, Thiébaut, Rodolphe, Thiessard, Frantz, Merchadou, Laurence Dequac, Marimoutou, Catherine, and Dabis, François
- Published
- 1998
21. Automatic processing of emergency room notes: focus on de-identification
- Author
-
Bourdois, Loïck, Avalos, Marta, Chenais, Gabrielle, Contrand, Benjamin, Gil-Jardiné, Cédric, Guennec-Jacques, Antoine, Revel, Philippe, Thiessard, Frantz, Touchais, Hélène, Lagarde, Emmanuel, Avalos, Marta, Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bordeaux (UB), Statistics In System biology and Translational Medicine (SISTM), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche en Informatique et en Automatique (Inria), CHU de Bordeaux Pellegrin [Bordeaux], and Journée organisée avec le soutien de l’Association française d’Informatique Médicale (AIM) et le Collège Science de l’Ingénierie des Connaissances de l’AFIA dans le cadre de la Plate-Forme Intelligence Artificielle (PFIA)
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,[STAT.ME] Statistics [stat]/Methodology [stat.ME] ,French ,Natural Langage Processing ,Urgences ,Emergency room ,[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] ,Pré-entraînement ,[STAT.CO] Statistics [stat]/Computation [stat.CO] ,Français ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Pre-training ,[STAT.AP] Statistics [stat]/Applications [stat.AP] ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,Transformers ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Traitement automatique du langage ,[STAT.CO]Statistics [stat]/Computation [stat.CO] ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] - Abstract
In France, structured data on emergency room visits are aggregated at the national level to build a syndromic surveillance system for different health events. For visits motivated by a traumatic event, information on the circumstances is stored in free text clinical notes. Automating the processing of these notes should allow the enrichment of surveillance tools. In development at Inserm and the Emergency Department of the Bordeaux University Hospital, The TARPON (for Automatic Processing of Emergency Room Notes for a National Observatory, in French) project aims to meet this objective by using the latest deep learning tools applied to automatic language analysis. To exploit these data, an automatic de-identification system, guaranteeing the protection of personal data, is necessary. We present here a comparison study of models allowing the de-identification of clinical texts in French., En France, les données structurées concernant les visites aux urgences sont agrégées au niveau national pour construire un système de surveillance syndromique de différents événements de santé. Pour les visites motivées par un événement traumatique, les informations sur les circonstances sont stockées dans des notes cliniques en texte libre. Automatiser le traitement de ces notes devrait permettre l'enrichissement des outils de surveillance. En développement à l'Inserm et au Service des urgences du CHU de Bordeaux, le projet TARPON (Traitement Automatique des Résumés de Passages aux urgences pour un Observatoire National) vise à répondre à cet objectif par le biais des derniers outils d'apprentissage profond appliqués à l'analyse automatique du langage. Pour exploiter ces données, un système de désidentification automatique, garantissant la protection des données personnelles est nécessaire. Nous présentons ici une étude de comparaison de modèles permettant la désidentification des textes cliniques en français.
- Published
- 2021
22. Effect of Competition Bias in Safety Signal Generation: Analysis of a Research Database of Spontaneous Reports in France
- Author
-
Pariente, Antoine, Avillach, Paul, Salvo, Francesco, Thiessard, Frantz, Miremont-Salamé, Ghada, Fourrier-Reglat, Annie, Haramburu, Françoise, Bégaud, Bernard, Moore, Nicholas, and Association Française des Centres Régionaux de Pharmacovigilance (CRPV)
- Published
- 2012
- Full Text
- View/download PDF
23. Early Detection of Pharmacovigilance Signals with Automated Methods Based on False Discovery Rates: A Comparative Study
- Author
-
Ahmed, Ismaïl, Thiessard, Frantz, Miremont-Salame, Ghada, Haramburu, Françoise, Kreft-Jais, Carmen, Be’gaud, Bernard, and Tubert-Bitter, Pascale
- Published
- 2012
- Full Text
- View/download PDF
24. Pilot evaluation of an automated method to decrease false-positive signals induced by co-prescriptions in spontaneous reporting databases†
- Author
-
Avillach, Paul, Salvo, Francesco, Thiessard, Frantz, Miremont-Salamé, Ghada, Fourrier-Reglat, Annie, Haramburu, Françoise, Bégaud, Bernard, Moore, Nicholas, and Pariente, Antoine
- Published
- 2014
- Full Text
- View/download PDF
25. Variable selection on large case-crossover data: application to a registry-based study of prescription drugs and road traffic crashes†
- Author
-
Avalos, Marta, Orriols, Ludivine, Pouyes, Hélène, Grandvalet, Yves, Thiessard, Frantz, and Lagarde, Emmanuel
- Published
- 2014
- Full Text
- View/download PDF
26. De-identification of Emergency Medical Records in French: Survey and Comparison of State-of-the-Art Automated Systems
- Author
-
Bourdois, Loick, primary, Avalos, Marta, primary, Chenais, Gabrielle, primary, Thiessard, Frantz, primary, Revel, Philippe, primary, Gil-Jardine, Cedric, primary, and Lagarde, Emmanuel, primary
- Published
- 2021
- Full Text
- View/download PDF
27. Pre-Training a Neural Language Model Improves the Sample Efficiency of an Emergency Room Classification Model
- Author
-
XU, Binbin, GIL-JARDINE, Cedric, THIESSARD, Frantz, TELLIER, Éric, AVALOS, Marta, LAGARDE, Emmanuel, Avalos, Marta, Roman Barták, Eric Bell, Université de Bordeaux (UB), Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Pellegrin, CHU Bordeaux [Bordeaux]-Groupe hospitalier Pellegrin, Statistics In System biology and Translational Medicine (SISTM), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Association for the Advancement of Artificial Intelligence
- Subjects
FOS: Computer and information sciences ,[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,Computer Science - Machine Learning ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,Computer Science - Computation and Language ,[STAT.ME] Statistics [stat]/Methodology [stat.ME] ,Computer Science - Artificial Intelligence ,ERIAS ,[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,SISTM ,Machine Learning (cs.LG) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Artificial Intelligence (cs.AI) ,ComputingMethodologies_PATTERNRECOGNITION ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,[STAT.AP] Statistics [stat]/Applications [stat.AP] ,IETO ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Computation and Language (cs.CL) ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering - Abstract
To build a French national electronic injury surveillance system based on emergency room visits, we aim to develop a coding system to classify their causes from clinical notes in free-text. Supervised learning techniques have shown good results in this area but require a large amount of expert annotated dataset which is time consuming and costly to obtain. We hypothesize that the Natural Language Processing Transformer model incorporating a generative self-supervised pre-training step can significantly reduce the required number of annotated samples for supervised fine-tuning. In this preliminary study, we test our hypothesis in the simplified problem of predicting whether a visit is the consequence of a traumatic event or not from free-text clinical notes. Using fully re-trained GPT-2 models (without OpenAI pre-trained weights), we assess the gain of applying a self-supervised pre-training phase with unlabeled notes prior to the supervised learning task. Results show that the number of data required to achieve a ginve level of performance (AUC>0.95) was reduced by a factor of 10 when applying pre-training. Namely, for 16 times more data, the fully-supervised model achieved an improvement, Version of the published manuscript
- Published
- 2020
28. Classification automatique du langage de données du service hospitalier des urgences
- Author
-
Xu, Binbin, Bourdois, Loïck, Gil-Jardine, Cédric, Tellier, Eric, Thiessard, Frantz, Avalos-Fernandez, Marta, Lagarde, Emmanuel, Avalos, Marta, Université de Bordeaux (UB), Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU de Bordeaux Pellegrin [Bordeaux], Statistics In System biology and Translational Medicine (SISTM), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH), and Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,Transformer ,[STAT.ME] Statistics [stat]/Methodology [stat.ME] ,[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,Neural Language Model ,[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[STAT.AP] Statistics [stat]/Applications [stat.AP] ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,GPT-2 ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,pre-training - Abstract
National audience; Des modèles basés sur l'architecture Transformer qui intègrent une étape de pré-entrainement non supervisé à objectif prédictif, tels que le GPT-2 (Generative Pretrained Transformer 2) ont atteint récemment des succès remarquables. Nous avons adapté et mis en oeuvre un modèle de traitement automatique du langage naturel (NLP pour Natural Language Processing) permettant de déterminer si un texte libre clinique est de nature traumatique ou non. Nous avons comparé cette approche, nécessitant un nombre d'échantillons annotés réduit, à une approche entièrement supervisée. Nos résultats (basés sur l'AUC et le F1-score) montrent qu'il est possible d'adapter un modèle polyvalent tel que le GPT-2 pour créer un outil puissant de classification de notes de texte libre en français avec seulement un très faible nombre d'échantillons labélisés.
- Published
- 2020
29. Neural Language Model for Automated Classification of Electronic Medical Records at the Emergency Room. The Significant Benefit of Unsupervised Generative Pre-training
- Author
-
Xu, Binbin, Gil-Jardiné, Cédric, Thiessard, Frantz, Tellier, Éric, Avalos, Marta, Lagarde, Emmanuel, Université de Bordeaux (UB), Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU de Bordeaux Pellegrin [Bordeaux], Statistics In System biology and Translational Medicine (SISTM), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Avalos, Marta
- Subjects
Transformer ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,[STAT.ME] Statistics [stat]/Methodology [stat.ME] ,[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] ,Neural Language Model ,[STAT.CO] Statistics [stat]/Computation [stat.CO] ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,[STAT.AP] Statistics [stat]/Applications [stat.AP] ,Pre-training ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,GPT-2 ,[STAT.CO]Statistics [stat]/Computation [stat.CO] ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] - Abstract
In order to build a national injury surveillance system based on emergency room (ER) visits we are developing a coding system to classify their causes from clinical notes in free-text. Supervised learning techniques have shown good results in this area but require large number of annotated dataset. New levels of performance have been recently achieved in neural language models (NLM) with models based on the Transformer architecture incorporating an unsupervised generative pre-training step. Our hypothesis is that methods involving a generative self-supervised pre-training step can significantly reduce the required number of annotated samples for supervised fine-tuning. In this case study, we assessed whether we could predict from free-text clinical notes whether a visit was the consequence of a traumatic or non-traumatic event. Using fully re-trained GPT-2 models (without OpenAI pre-trained weightings), we compared two scenarios: Scenario A (26 study cases of different training data sizes) consisted in training the GPT-2 on the trauma/non-trauma labeled (up to 161 930) clinical notes. In Scenario B (19 study cases), a first step of self-supervised pre-training phase with unlabeled (up to 151 930) notes and the second step of supervised fine-tuning with labeled (up to 10 000) notes. Results showed that, Scenario A needed to process >6 000 notes to achieve good performance (AUC>0.95), Scenario B needed only 600 notes, gain of a factor 10. At the end case of both scenarios, for 16 times more data (161 930 vs. 10 000), the gain from Scenario A compared to Scenario B is only an improvement of 0.89% in AUC and 2.12% in F1 score. To conclude, it is possible to adapt a multi-purpose NLM model such as the GPT-2 to create a powerful tool for classification of free-text notes with only very small number of labeled samples.
- Published
- 2019
30. Trends in Spontaneous Adverse Drug Reaction Reports to the French Pharmacovigilance System (1986—2001)
- Author
-
Thiessard, Frantz, Roux, Emmanuel, Miremont-Salamé, Ghada, Fourrier-Réglat, Annie, Haramburu, Françoise, Tubert-Bitter, Pascale, and Bégaud, Bernard
- Published
- 2005
- Full Text
- View/download PDF
31. Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU–ADR project
- Author
-
Avillach, Paul, Dufour, Jean-Charles, Diallo, Gayo, Salvo, Francesco, Joubert, Michel, Thiessard, Frantz, Mougin, Fleur, Trifirò, Gianluca, Fourrier-Réglat, Annie, Pariente, Antoine, and Fieschi, Marius
- Published
- 2013
- Full Text
- View/download PDF
32. Approche sémantique pour l’identification homogène d’effets indésirables et de médicaments dans huit bases de données de patients: une contribution au projet européen eu-ADR
- Author
-
Avillach, Paul, primary, Mougin, Fleur, additional, Jouberr, Michel, additional, Thiessard, Frantz, additional, Pariente, Antoine, additional, Dufour, Jean-Charles, additional, and Fieschi, Marius, additional
- Published
- 2009
- Full Text
- View/download PDF
33. Annotations d'entités et de relations sur des résumés d'articles scientifiques pour la détection d'interactions entre aliments et médicaments
- Author
-
Randriatsitohaina, Tsanta, Grouin, Cyril, Bedouch, Pierrick, Bordea, Georgeta, Daveluy, Amélie, Depras, Vincent, Grabar, Natalia, Miremont-Salamé, Ghada, Mougin, Fleur, Pageot, Cécile, Thiessard, Frantz, Hamon, Thierry, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Techniques pour l'Evaluation et la Modélisation des Actions de la Santé (TIMC-IMAG-ThEMAS), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Régional de Pharmacovigilance, Hôpital Pellegrin, CNHIM, Savoirs, Textes, Langage (STL) - UMR 8163 (STL), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Pharmacoepidemiologie et évaluation de l'impact des produits de santé sur les populations, Université Bordeaux Segalen - Bordeaux 2-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), CHU Bordeaux [Bordeaux], Université Paris 13 (UP13), ANR-16-CE23-0012,MIAM,Maladies, Interactions Alimentation-Médicaments(2016), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bordeaux Segalen - Bordeaux 2-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-IMAG-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-IMAG-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), and Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université Sciences et Technologies - Bordeaux 1-Université Bordeaux Segalen - Bordeaux 2
- Subjects
Interactions aliments-médicaments ,Traitement Automatique des Langues ,[INFO]Computer Science [cs] ,Classification - Abstract
International audience; Dans cet article, nous présentons le schéma d'annotation utilisé pour étudier les interactions aliments-médicaments (Food-drug interaction-FDI). Le corpus se compose de 639 résumés d'articles scientifiques issus de Medline. Nous avons défini un schéma d'annotation constitué de 21 catégories d'entités et de 21 types de relations appliquées sur 9 catégories d'entités. Ces schémas ont été appliqués sur des documents rédigés en anglais ou en français, ouvrant la voie à un corpus multilingue annoté au moyen des mêmes catégories. Nous présentons également quelques expériences d'identification automatique des types de relations. L'adaptation de domaine à partir des interactions médicament-médicament (DDI) permet d'avoir un schéma d'annotation des relations selon 4 types. L'extraction automatique de ces relations conduit à une F1-mesure de 0.79 obtenue avec un modèle SVM précédé d'un processus de sélection de descripteurs SFM.
- Published
- 2019
34. Detecting drug non-compliance in Internet fora using information retrieval and machine learning approaches
- Author
-
Bigeard, Elise, Thiessard, Frantz, Grabar, N., Savoirs, Textes, Langage (STL) - UMR 8163 (STL), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Département de Pharmacologie, Université Bordeaux Segalen - Bordeaux 2-IFR99, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Université Bordeaux Segalen - Bordeaux 2, ANR-16-CE23-0012,MIAM,Maladies, Interactions Alimentation-Médicaments(2016), Bordeaux population health (BPH), and Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
ERIAS ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,[INFO]Computer Science [cs] ,ComputingMilieux_MISCELLANEOUS ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] - Abstract
Non-compliance situations happen when patients do not follow their prescriptions and take actions that lead to potentially harmful situations. Although such situations are dangerous, patients usually do not report them to their physicians. Hence, it is necessary to study other sources of information. We propose to study online health fora. The purpose of our work is to explore online health fora with supervised classification and information retrieval methods in order to identify messages that contain drug non-compliance. The supervised classification method permits detection of non-compliance with up to 0.824 F-measure, while the information retrieval method permits detection non-compliance with up to 0.529 F-measure. For some fine-grained categories and new data, it shows up to 0.65-0.70 Precision.
- Published
- 2019
35. SmartCRF: A Prototype to Visualize, Search and Annotate an Electronic Health Record from an i2b2 Clinical Data Warehouse
- Author
-
COSSIN, Sebastien, LEBRUN, Luc, AYMERIC, Niamkey, MOUGIN, Fleur, LAMBERT, M., DIALLO, Gayo, THIESSARD, Frantz, JOUHET, Vianney, Bordeaux population health (BPH), and Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
User-Computer Interface ,MESH: Data Warehousing ,Data Warehousing ,ComputingMilieux_COMPUTERSANDSOCIETY ,Electronic Health Records ,Information Storage and Retrieval ,MESH: Information Storage and Retrieval ,MESH: Electronic Health Records ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; Clinical information in electronic health records (EHRs) is mostly unstructured. With the ever-increasing amount of information in patients' EHRs, manual extraction of clinical information for data reuse can be tedious and time-consuming without dedicated tools. In this paper, we present SmartCRF, a prototype to visualize, search and ease the extraction and structuration of information from EHRs stored in an i2b2 data warehouse.
- Published
- 2019
36. Detection and analysis of drug non-compliance in internet fora using information retrieval approaches
- Author
-
Bigeard, Lise, Thiessard, Frantz, Grabar, Natalia, Savoirs, Textes, Langage (STL) - UMR 8163 (STL), Université de Lille-Centre National de la Recherche Scientifique (CNRS), CHU Bordeaux [Bordeaux], and ANR-16-CE23-0012,MIAM,Maladies, Interactions Alimentation-Médicaments(2016)
- Subjects
[SDV]Life Sciences [q-bio] ,[INFO]Computer Science [cs] - Abstract
International audience; In the health-related field, drug non-compliance situations happen when patients do not follow their prescriptions and do actions which lead to potentially harmful situations. Although such situations are dangerous, patients usually do not report them to their physicians. Hence, it is necessary to study other sources of information. We propose to study online health fora with information retrieval methods in order to identify messages that contain drug non-compliance information. Exploitation of information retrieval methods permits to detect non-compliance messages with up to 0.529 F-measure, compared to 0.824 F-measure reached with supervized machine learning methods. For some fine-grained categories and on new data, it shows up to 0.70 Precision.
- Published
- 2019
37. Stud Health Technol Inform
- Author
-
SOME, B. M. J., BORDEA, Georgeta, THIESSARD, Frantz, SCHULZ, S., and DIALLO, Gayo
- Published
- 2019
38. Stud Health Technol Inform
- Author
-
BIGEARD, Elise, THIESSARD, Frantz, and GRABAR, N.
- Published
- 2019
39. Risk of Drug-Drug Interactions in Out-Hospital Drug Dispensings in France: Results From the DRUG-Drug Interaction Prevalence Study
- Author
-
LETINIER, Louis, COSSIN, Sebastien, MANSIAUX, Yohann, ARNAUD, Mickael, SALVO, Francesco, BEZIN, Julien, THIESSARD, Frantz, PARIENTE, Antoine, Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Admin, Oskar
- Subjects
Pharmacology ,medication errors ,pharmacoepidemiology ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,antiarrhythmic drugs ,[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,drug interactions ,claim database ,Original Research - Abstract
International audience; Introduction: Drug interactions could account for 1% of hospitalizations in the general population and 2-5% of hospital admissions in the elderly. However, few data are available on the drugs concerned and the potential severity of the interactions encountered. We thus first aimed to estimate the prevalence of dispensings including drugs Contraindicated or Discommended because of Interactions (CDI codispensings) and to identify the most frequently involved drug pairs. Second, we aimed to investigate whether the frequency of CDI codispensings appeared higher or lower than the expected for the drugs involved.Methods: We carried out a study using a random sample of all drugs dispensings registered in a database of the French Health Insurance System between 2010 and 2015. The distribution of the drugs involved was described considering active principles, detailing the 20 most frequent ones for both contraindicated or discommended codispensings (DCs). To investigate whether the frequency of CDI codispensings appeared higher or lower than the expected for the drugs involved, we developed a specific indicator, the Drug-drug interaction prevalence study-score (DIPS-score), that compares for each drug pair the observed frequency of codispensing to its expected probability. The latter is determined considering the frequencies of dispensings of the individual drugs constituting a pair of interest.Results: We analyzed 6,908,910 dispensings: 13,196 (0.2%) involved contraindicated codispensings (CCs), and 95,410 (1.4%) DCs. For CCS, the most frequently involved drug pair was "bisoprolol+flecainide" = 5,036); four out of five of the most represented pairs involved cardiovascular drugs. For DCS, the most frequently involved drug pair was "ramipril+spironolactone" = 4,741); all of the five most represented pairs involved cardiovascular drugs. The drug pair involved in the CC with the highest score value was "citalopram+hydroxyzine" (DIPS-score: 3.7; 2.9-4.6); that with the lowest score was "clarithromycin+simvastatin" (DIPS-score: 0.2; 0.2-0.3). DIPS-score median value was 0.4 for CCs and 0.6 for DCs.Conclusion: This high prevalence of CDI codispensings enforces the need for further risk-prevention actions regarding drug-drug interactions (DDIs), especially for arrhythmogenic or anti-arrhythmic drugs. In this perspective, the DIPS-score we develop could ease identifying the interactions that are poorly considered by clinicians/pharmacists and targeting interventions.
- Published
- 2019
40. Effect of Well-Established Drug-Event Associations on the Generation of New Signals in Spontaneous Reporting Databases: 420.
- Author
-
Pariente, Antoine, Avillach, Paul, Thiessard, Frantz, Miremont-Salame, Ghada, Fourrier-Reglat, Annie, Haramburu, Françoise, and Moore, Nicholas
- Published
- 2007
41. Timeline representation of clinical data usability and added value for pharmacovigilance
- Author
-
Ledieu, Thibault, Bouzillé, Guillaume, Thiessard, Frantz, Berquet, Karine, van Hille, Pascal, Renault, Eric, Polard, Elisabeth, Cuggia, Marc, Laboratoire Traitement du Signal et de l'Image (LTSI), Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Pontchaillou [Rennes], Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), ANR-11-TECS-0012, Agence Nationale de la Recherche, PEPS consortium, ANR-11-TECS-0012,RAVEL,Recherche et Visualisation des informations dans le dossier patient electronique(2011), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM), Jonchère, Laurent, and Technologie pour la santé et l'autonomie - Recherche et Visualisation des informations dans le dossier patient electronique - - RAVEL2011 - ANR-11-TECS-0012 - TecSan - VALID
- Subjects
[SDV.IB] Life Sciences [q-bio]/Bioengineering ,Informatics ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,[INFO.INFO-RO] Computer Science [cs]/Operations Research [cs.RO] ,Drug-Related Side Effects and Adverse Reactions ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences ,lcsh:Computer applications to medicine. Medical informatics ,Data Accuracy ,[SDV.SP] Life Sciences [q-bio]/Pharmaceutical sciences ,Pharmacovigilance ,Usability testing ,Information visualization ,[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie ,Data Warehousing ,Surveys and Questionnaires ,[INFO.INFO-DB] Computer Science [cs]/Databases [cs.DB] ,Adverse Drug Reaction Reporting Systems ,Electronic Health Records ,Humans ,lcsh:R858-859.7 ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Software - Abstract
Background Pharmacovigilance consists in monitoring and preventing the occurrence of adverse drug reactions (ADR). This activity requires the collection and analysis of data from the patient record or any other sources to find clues of a causality link between the drug and the ADR. This can be time-consuming because often patient data are heterogeneous and scattered in several files. To facilitate this task, we developed a timeline prototype to gather and classify patient data according to their chronology. Here, we evaluated its usability and quantified its contribution to routine pharmacovigilance using real ADR cases. Methods The timeline prototype was assessed using the biomedical data warehouse eHOP (from entrepôt de données biomédicales de l’HOPital) of the Rennes University Hospital Centre. First, the prototype usability was tested by six experts of the Regional Pharmacovigilance Centre of Rennes. Their experience was assessed with the MORAE software and a System and Usability Scale (SUS) questionnaire. Then, to quantify the timeline contribution to pharmacovigilance routine practice, three of them were asked to investigate possible ADR cases with the “Usual method” (analysis of electronic health record data with the DxCare software) or the “Timeline method”. The time to complete the task and the data quality in their reports (using the vigiGrade Completeness score) were recorded and compared between methods. Results All participants completed their tasks. The usability could be considered almost excellent with an average SUS score of 82.5/100. The time to complete the assessment was comparable between methods (P = 0.38) as well as the average vigiGrade Completeness of the data collected with the two methods (P = 0.49). Conclusions The results showed a good general level of usability for the timeline prototype. Conversely, no difference in terms of the time spent on each ADR case and data quality was found compared with the usual method. However, this absence of difference between the timeline and the usual tools that have been in use for several years suggests a potential use in pharmacovigilance especially because the testers asked to continue using the timeline after the evaluation. Electronic supplementary material The online version of this article (10.1186/s12911-018-0667-x) contains supplementary material, which is available to authorized users.
- Published
- 2018
42. The history of disproportionality measures (reporting odds ratio, proportional reporting rates) in spontaneous reporting of adverse drug reactions
- Author
-
Moore, Nicholas, Thiessard, Frantz, and Begaud, Bernard
- Published
- 2005
- Full Text
- View/download PDF
43. Prognostic factors after non-Hodgkin lymphoma in patients infected with the human immunodeficiency virus: Aquitaine Cohort, France, 1986-1997
- Author
-
Thiessard, Frantz, Morlat, Philippe, Marimoutou, Catherine, Labourie, Eric, Ragnaud, Jean-Marie, Pellegrin, Jean-Luc, Dupon, Michel, and Dabis, Francois
- Subjects
HIV infection -- Drug therapy ,Highly active antiretroviral therapy -- Evaluation ,Non-Hodgkin's lymphomas -- Complications ,Health - Published
- 2000
44. Detection and Analysis of Drug Misuses. A Study Based on Social Media Messages
- Author
-
Bigeard, Elise, Grabar, Natalia, Thiessard, Frantz, Savoirs, Textes, Langage (STL) - UMR 8163 (STL), Université de Lille-Centre National de la Recherche Scientifique (CNRS), INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), and ANR-16-CE23-0012,MIAM,Maladies, Interactions Alimentation-Médicaments(2016)
- Subjects
Pharmacology ,[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,[SHS.INFO]Humanities and Social Sciences/Library and information sciences ,[SDV]Life Sciences [q-bio] ,[INFO.INFO-WB]Computer Science [cs]/Web ,Pharmacology (medical) ,ComputingMilieux_MISCELLANEOUS ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience
- Published
- 2018
45. Study of online health discussion fora for the detection of medication misusesÉlise misuses´misusesÉlise
- Author
-
Bigeard, Elise, Thiessard, Frantz, Grabar, Natalia, Département de Pharmacologie, Université Bordeaux Segalen - Bordeaux 2-IFR99, Savoirs, Textes, Langage (STL) - UMR 8163 (STL), Université de Lille-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE23-0012,MIAM,Maladies, Interactions Alimentation-Médicaments(2016)
- Subjects
Internet ,Text mining ,[SHS.INFO]Humanities and Social Sciences/Library and information sciences ,[SDV]Life Sciences [q-bio] ,education ,[INFO.INFO-WB]Computer Science [cs]/Web ,[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,Knowledge discovery ,Discussion forums ,Machine learning ,Prototypes ,Biomedical informatics ,Supervised learning ,Natural Language Processing - Abstract
International audience; Misuses occur when patients do not respect prescriptions and commit actions which can lead to harmful results. Even if such situations are dangerous, patients do not inform medical doctors about such events. To obtain some information on misuses, it becomes necessary to study other sources of information. We propose to concentrate on discussion fora. The purpose of our work is to explore health fora with machine learning methods and to identify messages where users describe or mention drug misuses. Our approach detects the mesuses with up to 0.773 F-measure. This approach can help in routine detection of misuses and to provide material exploitable by health professionals.
- Published
- 2018
46. Clinical Data Analytics With Time-Related Graphical User Interfaces: Application to Pharmacovigilance
- Author
-
Ledieu, Thibault, Bouzillé, Guillaume, Polard, Elisabeth, Plaisant, Catherine, Thiessard, Frantz, Cuggia, Marc, Laboratoire Traitement du Signal et de l'Image (LTSI), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Pontchaillou [Rennes], University of Maryland [College Park], University of Maryland System, Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), PEPS consortium (Pharmaco-Epidemiology of Health Products consortium), ANR-11-TECS-0012,RAVEL,Recherche et Visualisation des informations dans le dossier patient electronique(2011), Jonchère, Laurent, Technologie pour la santé et l'autonomie - Recherche et Visualisation des informations dans le dossier patient electronique - - RAVEL2011 - ANR-11-TECS-0012 - TecSan - VALID, and Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[SDV.IB] Life Sciences [q-bio]/Bioengineering ,[SDV.SP] Life Sciences [q-bio]/Pharmaceutical sciences ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,temporal data mining ,pharmacovigilance ,graphical user interface ,[INFO.INFO-DB] Computer Science [cs]/Databases [cs.DB] ,informatics ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] ,[INFO.INFO-HC] Computer Science [cs]/Human-Computer Interaction [cs.HC] ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences ,usability testing - Abstract
International audience; Pharmacovigilance consists in monitoring and preventing the occurrence of adverse drug reactions. This activity can be time-consuming because it requires the collection of both patient and medication information. In this paper, we present two visualization and data mining applications to make this task easier for the practitioner. These tools have been developed and tested using the biomedical data warehouse eHOP (Hospital Biomedical Data Warehouse) of the Rennes University Hospital Centre. The first application is a tool to visualize the patient electronic health record in the form of a timeline. All patient data is collected and displayed chronologically. The usability test of the timeline has been very positive (SUS score 82.5) and the tool is now available for practitioners in their daily practice. The second application is a tool to visualize and search the sequences of a patient cohort. The visual interface allow user to quickly visualize sequences. A query builder allows user to search for sequences in relation with a reference sequence, such as a prescription sequence followed by an abnormal biological value. The sequences are then visually aligned with this reference sequence and ranked by similarity. The GSP (Generalized Sequential Pattern) and Apriori algorithms allow us to display a summary of the sequences list by searching for common sequences and associations. The tool was tested on a use case which consisted in detection of inappropriate drug administration. Compared to a random order, we showed this ranking system saved the practitioner time in this task (to analyze one sequence, 3.49 +/- 3.54 vs. 2.26 +/- 2.86 s, p = 0.0003). These two visualization and data mining applications will help the daily practice of pharmacovigilance.
- Published
- 2018
47. Artificial Intelligence in Public Health and Epidemiology
- Author
-
Thiébaut, Rodolphe, Thiessard, Frantz, Statistics In System biology and Translational Medicine (SISTM), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux population health (BPH), and Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
ERIAS ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,SISTM - Abstract
OBJECTIVES: To introduce and summarize current research in the field of Public Health and Epidemiology Informatics. METHODS: The 2017 literature concerning public health and epidemiology informatics was searched in PubMed and Web of Science, and the returned references were reviewed by the two section editors to select 14 candidate best papers. These papers were then peer-reviewed by external reviewers to provide the editorial team with an enlightened vision to select the best papers. RESULTS: Among the 843 references retrieved from PubMed and Web of Science, two were finally selected as best papers. The first one analyzes the relationship between the disease, social/mass media, and public emotions to understand public overreaction (leading to a noticeable reduction of social and economic activities) in the context of a nation-wide outbreak of Middle East Respiratory Syndrome (MERS) in Korea in 2015. The second paper concerns a new methodology to de-identify patient notes in electronic health records based on artificial neural networks that outperformed existing methods. CONCLUSIONS: Surveillance is still a productive topic in public health informatics but other very important topics in Public Health are appearing. For example, the use of artificial intelligence approaches is increasing.
- Published
- 2018
48. Antiretroviral combination therapy and HIV infection: Long term follow up of patients under triple therapy is necessary
- Author
-
Thiebaut, Rodolphe, Thiessard, Frantz, Merchadon, Laurence Dequac, Marimoutou, Catherine, and Dabis, Francois
- Published
- 1998
49. Protocole of a controlled before-after evaluation of a national health information technology-based program to improve healthcare coordination and access to information
- Author
-
Saillour-Glénisson, Florence, Duhamel, Sylvie, Fourneyron, Emmanuelle, Huiart, Laetitia, Joseph, Jean Philippe, Langlois, Emmanuel, Pincemail, Stephane, Ramel, Viviane, Renaud, Thomas, Roberts, Tamara, Sibé, Matthieu, Thiessard, Frantz, Wittwer, Jerome, Salmi, Louis Rachid, CHU Bordeaux [Bordeaux], Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Cellule de Suivi du Littoral Normand (CSLN), Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED), GHER Groupe Hospitalier Est Réunion, Advanced Light Source [LBNL Berkeley] (ALS), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Centre Émile Durkheim (CED), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Sciences Po Bordeaux - Institut d'études politiques de Bordeaux (IEP Bordeaux), INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)- Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire d'Economie de Dauphine (LEDa), Institut de Recherche pour le Développement (IRD)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Sciences Po Bordeaux - Institut d'études politiques de Bordeaux (IEP Bordeaux)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bordeaux Segalen - Bordeaux 2-Institut National de la Santé et de la Recherche Médicale (INSERM), Sagat, Caroline, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), and Université Bordeaux Segalen - Bordeaux 2
- Subjects
[SHS.SOCIO]Humanities and Social Sciences/Sociology ,National Health Programs ,[SHS.SOCIO] Humanities and Social Sciences/Sociology ,Information Dissemination ,Health Personnel ,[SHS.ANTHRO-BIO]Humanities and Social Sciences/Biological anthropology ,Health Services ,Health information technology ,Program evaluation ,Quality Improvement ,[SHS.SCIPO]Humanities and Social Sciences/Political science ,[SHS.ANTHRO-BIO] Humanities and Social Sciences/Biological anthropology ,[SHS]Humanities and Social Sciences ,Access to Information ,Study Protocol ,Patient care management ,Controlled Before-After Studies ,Surveys and Questionnaires ,Humans ,[SHS] Humanities and Social Sciences ,[SHS.SCIPO] Humanities and Social Sciences/Political science ,Delivery of Health Care - Abstract
Background Improvement of coordination of all health and social care actors in the patient pathways is an important issue in many countries. Health Information (HI) technology has been considered as a potentially effective answer to this issue. The French Health Ministry first funded the development of five TSN (“Territoire de Soins Numérique”/Digital health territories) projects, aiming at improving healthcare coordination and access to information for healthcare providers, patients and the population, and at improving healthcare professionals work organization. The French Health Ministry then launched a call for grant to fund one research project consisting in evaluating the TSN projects implementation and impact and in developing a model for HI technology evaluation. Methods EvaTSN is mainly based on a controlled before-after study design. Data collection covers three periods: before TSN program implementation, during early TSN program implementation and at late TSN program implementation, in the five TSN projects’ territories and in five comparison territories. Three populations will be considered: “TSN-targeted people” (healthcare system users and people having characteristics targeted by the TSN projects), “TSN patient users” (people included in TSN experimentations or using particular services) and “TSN professional users” (healthcare professionals involved in TSN projects). Several samples will be made in each population depending on the objective, axis and stage of the study. Four types of data sources are considered: 1) extractions from the French National Heath Insurance Database (SNIIRAM) and the French Autonomy Personalized Allowance database, 2) Ad hoc surveys collecting information on knowledge of TSN projects, TSN program use, ease of use, satisfaction and understanding, TSN pathway experience and appropriateness of hospital admissions, 3) qualitative analyses using semi-directive interviews and focus groups and document analyses and 4) extractions of TSN implementation indicators from TSN program database. Discussion EvaTSN is a challenging French national project for the production of evidenced-based information on HI technologies impact and on the context and conditions of their effectiveness and efficiency. We will be able to support health care management in order to implement HI technologies. We will also be able to produce an evaluation toolkit for HI technology evaluation. Trial registration ClinicalTrials.gov ID: NCT02837406, 08/18/2016.
- Published
- 2017
50. Building a model for disease classification integration in oncology: an approach based on the National Cancer Institute thesaurus
- Author
-
Jouhet, Vianney, Mougin, Fleur, Bréchat-Huet, Bérénice, Thiessard, Frantz, Bordeaux population health (BPH), Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bordeaux (UB), INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bordeaux Segalen - Bordeaux 2-Institut National de la Santé et de la Recherche Médicale (INSERM), Epidémiologie et Biostatistique [Bordeaux], Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bordeaux Segalen - Bordeaux 2-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)- Bordeaux population health (BPH), and Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
ComputingMilieux_MISCELLANEOUS ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.