1. Controllable synthesis of α-Fe2O3 nanorods toward photoelectrochemical applications
- Author
-
Thao Ngo Thi Hien, Gam Cao Thi Mong, Thanh Ha Van, Lam Nguyen Tan, and Trung Tran Nam
- Abstract
Morphologically controllable synthesis of nanomaterials plays an important role in minimizing the drawbacks of materials as well as improving their properties. Herein, we report our recent efforts in controlling the synthesis of α-Fe2O3 nanorods via a hydrothermal approach. By varying the molar ratio of the precursors of iron(III) chloride and urea, different morphological structures of Fe2O3 nanorods were obtained. The results showed that upon using the molar ratio of the precursors of 2/3, the nanorods have an average diameter and length of ~80 nm and ~1 mm, respectively. In addition, these nanorods were vertically standing on the fluorine-doped tin oxide (FTO) substrate and the synthesized sample showed a highly porous structure. Moreover, based on these synthesized samples, photoelectrodes were fabricated to test their photoelectrochemical activity. Our results reveal that the ideal geometry of α-Fe2O3 nanorods can be used as promising candidates for applications in the fields of energy conversion and environment.
- Published
- 2021
- Full Text
- View/download PDF