5 results on '"Tflearn"'
Search Results
2. A concept of an intent-based contextual chat-bot with capabilities for continual learning
- Author
-
Strutynskiy, Maksym and Strutynskiy, Maksym
- Abstract
Chat-bots are computer programs designed to conduct textual or audible conversations with a single user. The job of a chat-bot is to be able to find the best response for any request the user issues. The best response is considered to answer the question and contain relevant information while following grammatical and lexical rules. Modern chat-bots often have trouble accomplishing all these tasks. State-of-the-art approaches, such as deep learning, and large datasets help chat-bots tackle this problem better. While there is a number of different approaches that can be applied for different kind of bots, datasets of suitable size are not always available. In this work, we introduce and evaluate a method of expanding the size of datasets. This will allow chat-bots, in combination with a good learning algorithm, to achieve higher precision while handling their tasks. The expansion method uses the continual learning approach that allows the bot to expand its own dataset while holding conversations with its users. In this work we test continual learning with IBM Watson Assistant chat-bot as well as a custom case study chat-bot implementation. We conduct the testing using a smaller and a larger datasets to find out if continual learning stays effective as the dataset size increases. The results show that the more conversations the chat-bot holds, the better it gets at guessing the intent of the user. They also show that continual learning works well for larger and smaller datasets, but the effect depends on the specifics of the chat-bot implementation. While continual learning makes good results better, it also turns bad results into worse ones, thus the chat-bot should be manually calibrated should the precision of the original results, measured before the expansion, decrease.
- Published
- 2020
3. Röstigenkänning med Movidius Neural Compute Stick
- Author
-
Vidmark, Stefan and Vidmark, Stefan
- Abstract
Företaget Omicron Ceti AB köpte en Intel Movidius Neural Compute Stick (NCS), som är en usb-enhet där neurala nätverk kan laddas in för att processa data. Min uppgift blev att studera hur NCS används och göra en guide med exempel. Med TensorFlow och hjälpbiblioteket TFLearn gjordes först ett testnätverk för att prova hela kedjan från träning till användning med NCS. Sedan tränades ett nätverk att kunna klassificera 14 olika ord. En mängd olika utformningar på nätverket testades, men till slut hittades ett exempel som blev en bra utgångspunkt och som efter lite justering gav en träffsäkerhet på 86% med testdatat. Vid inläsning i mikrofon så blev resultatet lite sämre, med 67% träffsäkerhet. Att processa data med NCS tog längre tid än med TFLearn men använde betydligt mindre CPU-kraft. I mindre system såsom en Raspberry Pi går det däremot inte ens att använda TensorFlow/TFLearn, så huruvida det är värt att använda NCS eller inte beror på det specifika användningsscenariot., Omicron Ceti AB company had an Intel Movidius Neural Compute Stick (NCS), which is a usb device that may be loaded with neural networks to process data. My assignment was to study how NCS is used and to make a guide with examples. Using TensorFlow and the TFLearn help library a test network was made for the purpose of trying the work pipeline, from network training to using the NCS. After that a network was trained to classify 14 different words. Many different configurations of the network were tried, until a good example was found that was expanded upon until an accuracy of 86% with the test data was reached. The accuracy when speaking into a microphone was a bit worse at 67%. To process data with the NCS took a longer time than with TFLearn but used a lot less CPU power. However it’s not even possible to use TensorFlow/TFLearn in smaller systems like a Raspberry Pi, so whether it’s worth using the NCS depends on the specific usage scenario.
- Published
- 2018
4. Voice recognition with Movidius Neural Compute Stick
- Author
-
Vidmark, Stefan
- Subjects
NCS ,Datorsystem ,maskininlärning ,Computer Systems ,movidius ,TFLearn ,neurala nätverk ,Inbäddad systemteknik ,röstigenkänning ,Embedded Systems - Abstract
Företaget Omicron Ceti AB köpte en Intel Movidius Neural Compute Stick (NCS), som är en usb-enhet där neurala nätverk kan laddas in för att processa data. Min uppgift blev att studera hur NCS används och göra en guide med exempel. Med TensorFlow och hjälpbiblioteket TFLearn gjordes först ett testnätverk för att prova hela kedjan från träning till användning med NCS. Sedan tränades ett nätverk att kunna klassificera 14 olika ord. En mängd olika utformningar på nätverket testades, men till slut hittades ett exempel som blev en bra utgångspunkt och som efter lite justering gav en träffsäkerhet på 86% med testdatat. Vid inläsning i mikrofon så blev resultatet lite sämre, med 67% träffsäkerhet. Att processa data med NCS tog längre tid än med TFLearn men använde betydligt mindre CPU-kraft. I mindre system såsom en Raspberry Pi går det däremot inte ens att använda TensorFlow/TFLearn, så huruvida det är värt att använda NCS eller inte beror på det specifika användningsscenariot. Omicron Ceti AB company had an Intel Movidius Neural Compute Stick (NCS), which is a usb device that may be loaded with neural networks to process data. My assignment was to study how NCS is used and to make a guide with examples. Using TensorFlow and the TFLearn help library a test network was made for the purpose of trying the work pipeline, from network training to using the NCS. After that a network was trained to classify 14 different words. Many different configurations of the network were tried, until a good example was found that was expanded upon until an accuracy of 86% with the test data was reached. The accuracy when speaking into a microphone was a bit worse at 67%. To process data with the NCS took a longer time than with TFLearn but used a lot less CPU power. However it’s not even possible to use TensorFlow/TFLearn in smaller systems like a Raspberry Pi, so whether it’s worth using the NCS depends on the specific usage scenario.
- Published
- 2018
5. Sistema de reconocimiento de emociones faciales
- Author
-
Martínez Moreno, Adrià, Universitat Autònoma de Barcelona. Escola d'Enginyeria, and Diaz-Chito, Katerine
- Subjects
Xarxa neuronal convolucional ,Reconocimiento de emociones faciales ,Tensorflow ,Reconeixement d'emocions facials ,Tflearn ,Aprenentatge automàtic ,Machine learning ,Emotions ,Deep learning ,Convolutional neural network ,Red neuronal convolucional ,Aprendizaje automático ,Recognition of facial emotions - Abstract
Actualmente existe la necesidad de ser capaces de clasificar las expresiones faciales de los humanos de manera automática para realizar algún tipo de análisis. El proyecto está dirigido al estudio e implementación de un sistema de reconocimiento de emociones faciales, utilizando redes neuronales (Deep Learning). A lo largo de este trabajo se hace uso de seis datasets diferentes. El resultado demuestra que el modelo creado a partir de la unión de los seis datasets obtiene mejores resultados que cualquiera de ellos por solitario. Currently there is a need to be able to automatically classify the facial expressions of humans to perform some type of analysis. The project is aimed at the study and implementation of a program that performs the recognition of a system of recognition of facial emotions using neural networks (Deep Learning). Throughout this work we use six different datasets. The result shows that the model created with the union of the six datasets in one only, obtains better results that any of them by solitary. Actualment hi ha la necessitat de ser capaços de classificar les expressions facials dels humans de manera automàtica per realitzar algun tipus d'anàlisi. El projecte està dirigit a l'estudi i implementació d'un sistema de reconeixement d'emocions facials, utilitzant xarxes neuronals (Deep Learning). Al llarg d'aquest treball es fa ús de sis datasets diferents. El resultat demostra que el model creat a partir de la unió dels sis datasets obté millors resultats que qualsevol d'ells per solitari.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.