6 results on '"Tesitore G"'
Search Results
2. Confirmation of the occurrence of odontesthes argentinensis (Valenciennes, 1835) (Atheriniformes, atherinopsidae) in the Rio Uruguay
- Author
-
D Anatro, A., Ivan González-Bergonzoni, Vidal, N., Tesitore, G., and Mello, F. T.
3. Human land-uses homogenize stream assemblages and reduce animal biomass production.
- Author
-
Moi DA, Barrios M, Tesitore G, Burwood M, Romero GQ, Mormul RP, Kratina P, Juen L, Michelan TS, Montag LFA, Cruz GM, García-Girón J, Heino J, Hughes RM, Figueiredo BRS, and Teixeira de Mello F
- Subjects
- Humans, Animals, Biomass, Rivers chemistry, Biodiversity, Ecosystem, Arthropods
- Abstract
Human land-use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land-uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life-history, resource and habitat-use, and body size. The effects of intensive human land-uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land-uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land-uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams., (© 2023 The Authors. Journal of Animal Ecology © 2023 British Ecological Society.)
- Published
- 2023
- Full Text
- View/download PDF
4. Multicompartmental monitoring of legacy and currently used pesticides in a subtropical lake used as a drinking water source (Laguna del Cisne, Uruguay).
- Author
-
Rodríguez-Bolaña C, Pérez-Parada A, Tesitore G, Goyenola G, Kröger A, Pacheco M, Gérez N, Berton A, Zinola G, Gil G, Mangarelli A, Pequeño F, Besil N, Niell S, Heinzen H, and Teixeira de Mello F
- Subjects
- Animals, Humans, Lakes, Uruguay, Ecosystem, DDT, Dichlorodiphenyl Dichloroethylene, Environmental Monitoring, Pesticides analysis, Drinking Water, Water Pollutants, Chemical analysis, Hydrocarbons, Chlorinated analysis
- Abstract
A pilot annual monitoring survey (April 2018-March 2019) was conducted to investigate the presence of pesticides in superficial water and fish in Laguna del Cisne, one of the most critical drinking water sources in Uruguay. A total of 25 pesticide residues were detected in superficial water (89.3 % of the samples). Pesticide's temporal distribution was associated with crops and livestock practices, with higher occurrences in spring and summer than in autumn and winter. The most frequent compounds in superficial water were the insecticide chlorantraniliprole, and the herbicides glyphosate (including its metabolite AMPA) and metolachlor. The levels of Organochlorine pesticide, p,p'-DDT, was in some cases two order of magnitude above the international water quality guidelines for Ambient Water Criteria. In fishes, eight different pesticides were detected, at concentrations from 1000 to 453,000 ng·kg
-1 . The most frequent pesticides found were propiconazole, chlorpyrifos, and p,p'-DDE. The widespread occurrence of pesticides in fish suggests potential exposure effects on fish populations and the aquatic ecosystem. The sampling approach of this work allowed monitoring the continuous concentrations of several pesticides in surface waters and fishes to establish the influence from past and current agriculture practices in Laguna del Cisne basin. For safety measures, continuous monitoring programs must be performed in this system to prevent toxicity impacts on aquatic organisms and human health., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
5. NEOTROPICAL FRESHWATER FISHES: A dataset of occurrence and abundance of freshwater fishes in the Neotropics.
- Author
-
Tonella LH, Ruaro R, Daga VS, Garcia DAZ, Vitorino OB Júnior, Lobato-de Magalhães T, Dos Reis RE, Di Dario F, Petry AC, Mincarone MM, de Assis Montag LF, Pompeu PS, Teixeira AAM, Carmassi AL, Sánchez AJ, Giraldo Pérez A, Bono A, Datovo A, Flecker AS, Sanches A, Godinho AL, Matthiensen A, Peressin A, Hilsdorf AWS, Barufatti A, Hirschmann A, Jung A, Cruz-Ramírez AK, Braga Silva A, Cunico AM, Saldanha Barbosa A, de Castro Barradas A, Rêgo ACL, Franco ACS, Costa APL, Vidotto-Magnoni AP, Ferreira A, Kassner Filho A, Nobile AB, Magalhães ALB, da Silva AT, Bialetzki A, Dos Santos Maroclo Gomes AC, Nobre AB, Casimiro ACR, Angulo Sibaja A, Dos Santos AAC, de Araújo ÁR, Frota A, Quirino BA, Ferreira BM, Albuquerque BW, Meneses BA, Oliveira BT, Torres Parahyba Campos BA, Gonçalves BB, Kubiak BB, da Silveira Prudente B, de Araujo Passos Pacheco BG, Nakagawa BK, do Nascimento BTM, Maia C, Cantagallo Devids C, Rezende CF, Muñoz-Mendoza C, Peres CA, de Sousa Rodrigues Filho CA, de Lucena CAS, Fernandes CA, Kasper CB, Donascimiento C, Emidio C Júnior, Carrillo-Moreno C, Machado C, Pera C, Hartmann C, Pringle CM, Leal CG, Jézéquel C, Harrod C, da Rosa CA, Quezada-Romegialli C, Pott CM, Larentis C, Nascimento CAS, da Silva Gonçalves C, da Cunha CJ, Pisicchio CM, de Carvalho DC, Galiano D, Gomez-Uchida D, Santana DO, Salas Johnson D, Petsch DK, de Freitas DTH, Bailly D, Machado DF, de Carvalho DR, Topan DH, Cañas-Rojas D, da Silva D, Freitas-Souza D, Lima-Júnior DP, Piscor D, Moraes DP, Viana D, Caetano DLF, Gubiani ÉA, Okada EK, do Amaral EC, Brambilla EM, Cunha ER, Kashiwaqui EAL, Rocha EA, Barp EA, da Costa Fraga E, D'Bastiani E, Zandonà E, Dary EP, Benedito E, Barba-Macías E, Calvache Uvidia EV, Fonseca FL, Ferreira FS, Lima F, Maffei F, Porto-Foresti F, Teresa FB, de Andrade Frehse F, Oliveira FJM, da Silva FP, de Lima FP, do Prado FD, Jerep FC, Vieira FEG, Gertum Becker F, de Carvalho FR, Ubaid FK, Teixeira FK, Provenzano Rizzi F, Severo-Neto F, Villamarín F, de Mello FT, Keppeler FW, de Avila Batista G, de Menezes Yazbeck G, Tesitore G, Salvador GN, Soteroruda Brito GJ, Carmassi GR, Kurchevski G, Goyenola G, Pereira HR, Alvez HJFS, do Prado HA, Pinho HLL, Sousa HL, Bornatowski H, de Oliveira Barbosa H, Tobes I, de Paiva Affonso I, Queiroz IR, Vila I, Negrete IVJ, Prado IG, Vitule JRS, Figueiredo-Filho J, Gonzalez JA, de Faria Falcão JC, Teixeira JV, Pincheira-Ulbrich J, da Silva JC, de Araujo Filho JA, da Silva JFM, Genova JG, Giovanelli JGR, Andriola JVP, Alves J, Valdiviezo-Rivera J, Brito J, Botero JIS, Liotta J, Ramirez JL, Marinho JR, Birindelli JLO, Novaes JLC, Hawes JE, Ribolli J, Rivadeneira JF, Schmitter-Soto JJ, Assis JC, da Silva JP, Dos Santos JS, Wingert J, Wojciechowski J, Bogoni JA, Ferrer J, Solórzano JCJ, Sá-Oliveira JC, Vaini JO, Contreras Palma K, Orlandi Bonato K, de Lima Pereira KD, Dos Santos Sousa K, Borja-Acosta KG, Carneiro L, Faria L, de Oliveira LB, Resende LC, da Silva Ingenito LF, Oliveira Silva L, Rodrigues LN, Guarderas-Flores L, Martins L, Tonini L, Braga LTMD, Gomes LC, de Fries L, da Silva LG, Jarduli LR, Lima LB, Gomes Fischer L, Wolff LL, Dos Santos LN, Bezerra LAV, Sarmento Soares LM, Manna LR, Duboc LF, Dos Santos Ribas LG, Malabarba LR, Brito MFG, Braga MR, de Almeida MS, Sily MC, Barros MC, do Nascimento MHS, de Souza Delapieve ML, Piedade MTF, Tagliaferro M, de Pinna MCC, Yánez-Muñoz MH, Orsi ML, da Rosa MF, Bastiani M, Stefani MS, Buenaño-Carriel M, Moreno MEV, de Carvalho MM, Kütter MT, Freitas MO, Cañas-Merino M, Cetra M, Herrera-Madrid M, Petrucio MM, Galetti M, Salcedo MÁ, Pascual M, Ribeiro MC, Abelha MCF, da Silva MA, de Araujo MP, Dias MS, Guimaraes Sales N, Benone NL, Sartor N, Fontoura NF, de Souza Trigueiro NS, Álvarez-Pliego N, Shibatta OA, Tedesco PA, Lehmann Albornoz PC, Santos PHF, Freitas PV, Fagundes PC, de Freitas PD, Mena-Valenzuela P, Tufiño P, Catelani PA, Peixoto P, Ilha P, de Aquino PPU, Gerhard P, Carvalho PH, Jiménez-Prado P, Galetti PM Jr, Borges PP, Nitschke PP, Manoel PS, Bernardes Perônico P, Soares PT, Piana PA, de Oliveira Cunha P, Plesley P, de Souza RCR, Rosa RR, El-Sabaawi RW, Rodrigues RR, Covain R, Loures RC, Braga RR, Ré R, Bigorne R, Cassemiro Biagioni R, Silvano RAM, Dala-Corte RB, Martins RT, Rosa R, Sartorello R, de Almeida Nobre R, Bassar RD, Gurgel-Lourenço RC, Pinheiro RFM, Carneiro RL, Florido R, Mazzoni R, Silva-Santos R, de Paula Santos R, Delariva RL, Hartz SM, Brosse S, Althoff SL, Nóbrega Marinho Furtado S, Lima-Junior SE, Lustosa Costa SY, Arrolho S, Auer SK, Bellay S, de Fátima Ramos Guimarães T, Francisco TM, Mantovano T, Gomes T, Ramos TPA, de Assis Volpi T, Emiliano TM, Barbosa TAP, Balbi TJ, da Silva Campos TN, Silva TT, Occhi TVT, Garcia TO, da Silva Freitas TM, Begot TO, da Silveira TLR, Lopes U, Schulz UH, Fagundes V, da Silva VFB, Azevedo-Santos VM, Ribeiro V, Tibúrcio VG, de Almeida VLL, Isaac-Nahum VJ, Abilhoa V, Campos VF, Kütter VT, de Mello Cionek V, Prodocimo V, Vicentin W, Martins WP, de Moraes Pires WM, da Graça WJ, Smith WS, Dáttilo W, Aguirre Maldonado WE, de Carvalho Rocha YGP, Súarez YR, and de Lucena ZMS
- Subjects
- Animals, Ecosystem, Mexico, Caribbean Region, Biodiversity, Fishes, Fresh Water
- Abstract
The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large-scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications., (© 2022 The Ecological Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
6. Does color play a predominant role in the intake of microplastics fragments by freshwater fish: an experimental approach with Psalidodon eigenmanniorum.
- Author
-
Ríos JM, Tesitore G, and de Mello FT
- Subjects
- Animals, Environmental Monitoring methods, Fishes metabolism, Fresh Water, Microplastics, Plastics metabolism, Characidae metabolism, Water Pollutants, Chemical analysis
- Abstract
Microplastics (MPs) have been reported in fish species from several freshwater environments. However, the mechanisms underlying MPs ingestion by fish are still unclear, although they are important to determine the pathway of MPs along freshwater environments food webs. Here, we investigates a fundamental question of why wild freshwater fish ingest plastic. To address this, we conducted a laboratory experiment to assess MP fragments intake according to color (red, green, yellow, white, black, and blue) by a small omnivorous fish species Psalidodon eigenmanniorum (Characidae). Results showed that yellow and blue were the most consumed fragments, whereas fish avoided white fragments. Although it is not yet clear how plastic coloration relates to the selectivity and feeding of freshwater fish, the visual skills at a species-specific level could plausibly explain why certain colors are attractive or deterrent to a particular fish species. This data set can be used as a screening tool that could help to understand the mechanisms underlying the patterns of plastic ingestion by fish, with special emphasis on the color of plastic particles. Future research on mechanisms MPs intake by fish, also providing a multi-species approach is highly recommended., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.