1. Training performance of Nb3Sn Rutherford cables in a channel with a wide range of impregnation materials
- Author
-
Otten, S., Kario, A., Leferink, W. A. J. Wessel. J., Kate, H. H. J. ten, Daly, M., Hug, C., Sidorov, S., Brem, A., Auchmann, B., Studer, P., and Tervoort, T.
- Subjects
Physics - Accelerator Physics - Abstract
Training of accelerator magnets is a costly and time consuming process. The number of training quenches must therefore be reduced to a minimum. We investigate training of impregnated Nb3Sn Rutherford cable in a small-scale experiment. The test involves a Rutherford cable impregnated in a meandering channel simulating the environment of a canted-cosine-theta (CCT) coil. The sample is powered using a transformer and the Lorentz force is generated by an externally applied magnetic field. The low material and helium consumption enable the test of a larger number of samples. In this article, we present training of samples impregnated with alumina-filled epoxy resins, a modified resin with paraffin-like mechanical properties, and a new tough resin in development at ETH Z\"urich. These new data are compared with previous results published earlier. Compared to samples with unfilled epoxy resin, those with alumina-filled epoxy show favorable training properties with higher initial quench currents and fewer training quenches before reaching 80% of the critical current., Comment: 4 pages, 6 figures. Submitted to IEEE Transactions on Applied Superconductivity (TAS) for publication in the ASC2022 special issue. Copyright of the article was transferred to IEEE by submission
- Published
- 2022