1. Peculiarities of Clay Mineral Formation in Pleistocene Sediments Under Specific Tectonomagmatic and Hydrothermal Conditions of the Central Hill (Escanaba Trough, Gorda Ridge, Pacific Ocean): Communication 1. Hole ODP 1038B.
- Author
-
Kurnosov, V. B., Sakharov, B. A., Konovalov, Yu. I., Savichev, A. T., Morozov, I. A., and Korshunov, D. M.
- Subjects
- *
CHLORITE minerals , *TERRIGENOUS sediments , *SMECTITE , *KAOLINITE , *BIOTITE , *CLAY minerals - Abstract
Using a complex of analytical methods, clay minerals were studied in Pleistocene sediments from Hole ODP 1038B (120.50 m deep), drilled on the northwestern edge of the Central Hill (Escanaba Trough, Gorda Ridge) near the hydrothermal source with a temperature of 108°C, as well as in Pleistocene background terrigenous sediments from reference Hole ODP 1037B, drilled in the Escanaba Trough 5 km south of the Central Hill. The terrigenous clay mineral assemblage in sediments from Hole 1037B consists of the mixed-layer smectite-illites, smectite, chlorite, illite, and kaolinite. Sediments from Hole 1038B in the interval from the bottom surface to a depth of 5–7 m are composed of terrigenous clay minerals. In the rest of the sedimentary section, clay minerals are represented by the newly formed biotite, chlorite, and dioctahedral smectite. They were formed during the basaltic melt intrusion into the Escanaba Trough with the formation of a laccolith and the subsequent rapid cooling of its flank. The intrusion was accompanied by the ascent of high-temperature hydrothermal fluid in the central discharge channel, interacting with the adjacent sediments. As a result, the fine-dispersed biotite was formed in sediments at the high-temperature stage of this interaction due to the primary terrigenous clay minerals, K-feldspar, and amphiboles. The rapid cooling of the hydrothermal fluid to a temperature of presumably 270–330°C promoted the partial replacement of biotite by chlorite. The further rapid cooling of the hydrothermal fluid to 200°C and lower and its mixing with seawater seeping into sediments of the Central Hill fostered the formation of smectite. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF