1. Extrusion-Based Three-Dimensional Printing of Metronidazole Immediate Release Tablets: Impact of Processing Parameters and in Vitro Evaluation.
- Author
-
Bhatkande, Atharva, Narala, Sagar, Wang, Honghe, Narala, Nagarjuna, Karnik, Indrajeet, Vemula, Sateesh Kumar, and Repka, Michael A.
- Abstract
Purpose: The current study assessed the potential of a pneumatic 3D printer in developing a taste-masked tablet in a single step. Metronidazole (MTZ) was chosen as the model drug, and Eudragit® E PO was used as a taste-masking polymer to produce taste-masked tablets. Methods: The study focused on optimizing processing parameters, such as the nozzle's printing speed, the printhead's heating temperature, and the pressure. Oval-shaped tablets were printed with a rectilinear printing pattern of 30% and 100% infill and evaluated for in vitro drug release and taste masking. The 3D-printed tablets are also characterized using Differential Scanning Calorimetry (DSC), Fourier-transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). Results: The infill density impacts the drug release profile of the tablets. F9, F10, and F11 displayed desired printability among the formulations, with F9 and F10 exhibiting over 85% drug release within 60 min in the in vitro dissolution study. The F9 formulation, with 30% infill, effectively masked the bitter taste of MTZ in the in vitro dissolution study carried out in a pH 6.8 artificial salivary medium. The observed release was below the tasting threshold concentration of the model drug. Conclusion: In summary, 3-dimensional extrusion-based printing combines the effects of hot-melt extrusion and fused deposition modeling techniques in a single-step process, demonstrating potential as an alternative to the fused-deposition model 3D printing technique and warranting further exploration. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF